

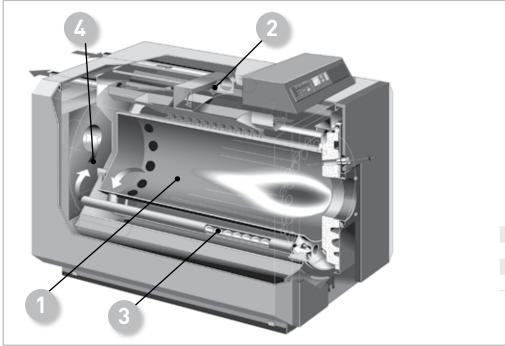
Pyronox LRP NT plus

Chaudière en acier basse température pour fioul et gaz

65 - 500 kW

Sous réserve de toutes modifications techniques et de la construction! © Ygnis AG, CH-6017 Ruswil Tech. Doc Pyronox LRP NT plus / f / Version 05/2014

Sommaire

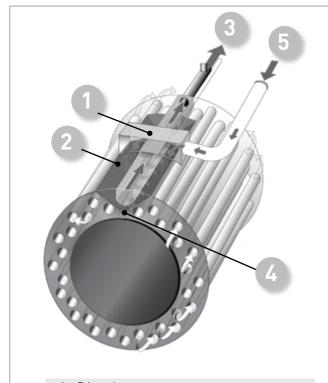

1	Desc	ription	4
	1.1	Conception et caractéristiques particulières	4
	1.2	Système de circulation d'eau PYROFLOW	5
	1.3	Certificats et homologations	5
2	Éten	due de la livraison	6
3	Cara	ctéristiques techniques	7
	3.1	Données de base / Conditions liminaires	7
	3.2	Dimensions	8
	3.3	Spécifications techniques	10
	3.4	Facteurs de correction pour conditions de fonctionnement divergentes	14
4	Instr	uctions de planification et d'installation	15
	4.1	Local de chauffe et ventilation	15
	4.2	Implantation	15
	4.3	Mesures d'insonorisation	16
	4.4	Raccordement hydraulique	17
	4.5	Installation électrique	18
	4.6	Raccordement du brûleur	19
	4.7	Système d'évacuation des fumées	20
5	Mont	age sur place	21
	5.1	Rémarques générales	21
	5.2	Dimensions	22
6	Table	eau de commande de la chaudière	23
	6.1	Généralités	23
	6.2	Données techniques et dimensions	24
	6.3	Placement des sondes	25
7	Cond	litions générales de fonctionnement	26
	7.1	Combustibles	26
	7.2	Air comburant	26
	7.3	Qualité de l'eau	26
	7.4	Protection contre la corrosion	27
8	Fonc	tion protection de la chaudière	28

1. Description

1.1 Conception et caractéristiques particulières

Les chaudières Pyronox LRP NT plus sont des chaudières basse température économisant l'énergie, à haut rendement, dans une plage de puissance de 65 à 500 kW.

Elles sont adaptées au fonctionnement avec des brûleurs au fioul domestique ou au gaz.



- Chambre de combustion
- 2 Systèmes Pyroflow
- 3 Carneaux
- 4 Collecteurs des fumées

- Les chaudières Pyronox LRP NT plus sont des chaudières à triple parcours de technologie Low-NOx.
- La géométrie du foyer adaptée à cette technologie et sa faible charge spécifique associées au système de développement de la flamme breveté par Ygnis, assurent des taux d'émission très faibles et un fonctionnement conforme à la réglementation de l'admisistration.
- Le troisième parcours des fumées est doté de turbulateurs. L'effet de turbulence qu'ils provoquent augmente encore le transfert de chaleur, rend possible un fonctionnement à basse tempèrature de fumées et garantit une utilisation optimale du combustible.
- L'importante isolation thermique de 100 mm en fibre de verre garantit de très faibles pertes à l'arrêt.
- L'utilisation d'un capot insonorisant (option) recouvrant toute la façade de chaudière peut minimiser les bruits du brûleur et réduire davantage les pertes par rayonnement.

- La façade de chaudière est dotée d'une isolation en fibre de céramique de haute qualité. Le pivotement de la porte frontale ouvre l'accès aux éléments en contact avec les gaz de fumées. Un nettoyage facile du foyer et des carneaux est ainsi assuré.
- Le collecteur de fumées, à l'arrière de la chaudière, est doté d'une ouverture de nettoyage.
- L'habillage très étanche de la chaudière se monte simplement et facilement. Les panneaux tôle de l'habillage sont traités par un procédé respectant l'environnement et ainsi protégés de façon durable contre la corrosion.
- Un débit de circulation d'eau minimal n'est pas nécessaire.
- Le système intégré de canalisation de l'eau PYROFLOW évite la formation d'eau de condensation et les corrosions qui en découlent.
- Il est possible d'éviter une pompe de mélange ou un maintien du talon de température de retour.

1.2 Système de circulation d'eau PYROFLOW

- 1 Répartiteur
- 2 Collecteur à buses
- 3 Départ
- 4 Ouvertures calibrées
- 5 Retour

La technique PYROFLOW est basée sur l'échange direct de chaleur et sur le mélange interne à la chaudière, entre eau de retour froide et eau de chaudière chaude.

Lors de l'entrée dans la chaudière, l'eau froide du retour est répartie par le distributeur dans le collecteur tubulaire à injecteur, qui enveloppe totalement le départ interne à la chaudière.

Dans cette zone, l'eau du retour est préchauffée. Par des ouvertures calibrées, réparties sur toute la lonqueur du collecteur, l'eau de retour préchauffée est conduite, vers le bas, en direction du tube du foyer en évitant le contact avec les surfaces d'échange.

La position concentrique du tube de flamme et des surfaces d'échanges par rayonnement et par convection, ainsi que le grand volume d'eau, permettent une répartition homogène de chaleur et une circulation naturelle sans entraves, une utilisation très complète de l'énergie, un fonctionnement stable et une intégration hydraulique simple.

1.3 Certificats et homologations

Cet apareil est conforme aux exigences de la Directive basse tension 73/23/CEE, de la Directive 89/336/CEE, de la Directive rendements 92/42/CEE et de la Directive Gaz 90/396/CEE.

Certificat CE: N° AEAI.: Type de construction chaudière: CE / 0461 N16592 01-226-573 X

2. Étendue de la livraison

Équipement standard:

- Corps de chaudière et collecteur des fumées avec isolation en fibre de verre, épaisseur 100 mm
- Porte de foyer pivotant à gauche ou à droite, étanche aux gaz, avec bride de fixation du brûleur
- Viseur de foyer intégré dans la porte de la chaudière
- Raccords départ et retour à bride avec contre bride, joints et boulons
- Raccordement de remplissage et de vidange (sans robinet de vidange)
- Oeillet de levage pour le transport
- Purgeur automatique
- Turbulateurs pour tubes de fumée
- Isolation de la chaudière
- Habillage chaudière (emballé séparément)
- Matériau d'isolation de la tête du brûleur (livré non monté)
- Kit de nettoyage
- 1 sonde de retour
- Notice d'installation et d'entretien

Options:

- Version en éléments séparés, montage sur place inclus, pour LRP NT plus 7 - 14
- Pression de service supérieure: 6, 8, 10 bar (sur demande).
- Capot insonorisant
- Isolation frontale
- Tableau de commande
- Plots antivibratiles VIBRATEX
- Set de neutralisation

3. Caractéristiques techniques

3.1 Données de base / Conditions liminaires

Pression maximale de service (sur demar	nde: 6, 8, 10 bar)	4,0 bar
Pression minimale de service		0,5 bar
Pression d'essai		6,0 bar
Brides départ et retour		PN 6
Température de fonctionnement maxi- male		95°C
Thermostat limiteur de sécurité (TS)		110°C
Températures de fonctionnement possibl	es avec le système de régulation YGNIS Pyrotronic	
Température minimale chaudière	au fuel	50°C
	au gaz naturel E/LL/propane	60°C
Température retour minimale		aucune limitation
Important! La température minimale de c 3-voies sur le débit volumique de l'eau de	chaudière (protection chaudière) est assurée par ac es circuits de chauffage secondaires.	tion des vannes

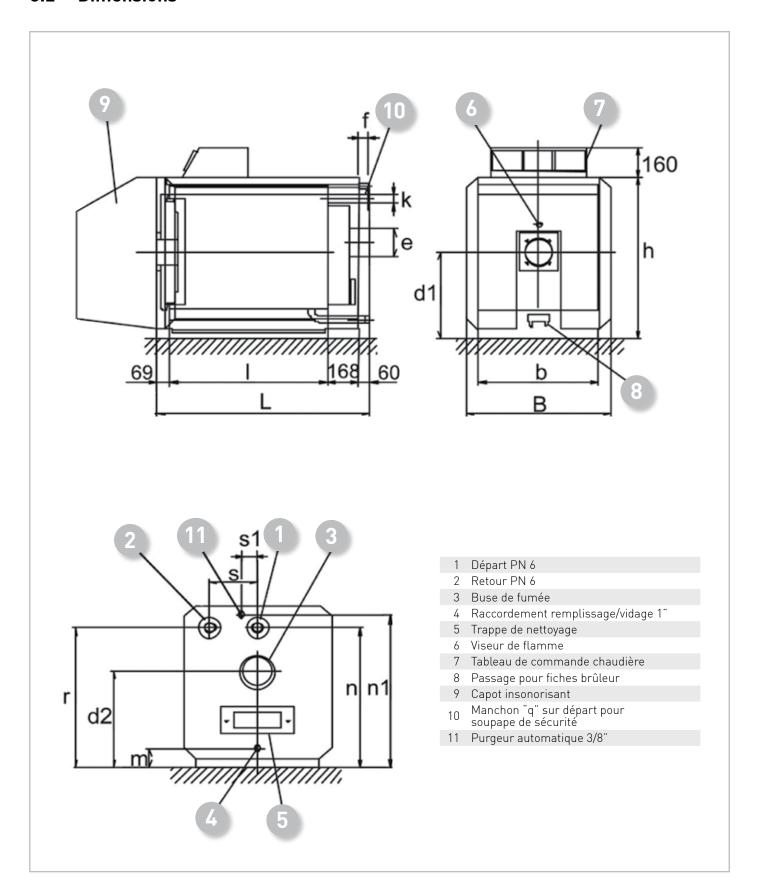
Températures de fonctionnement possibles avec le système de régulation concurrent

Température minimale chaudière au fuel 50°C

au gaz naturel E/LL/propane 60°C

Température retour minimale à la température de conception > 15°C: aucune limitation

à la température de conception < 15°C: supplémentaires mesures


de sécurité de la chaudière doivent être prises

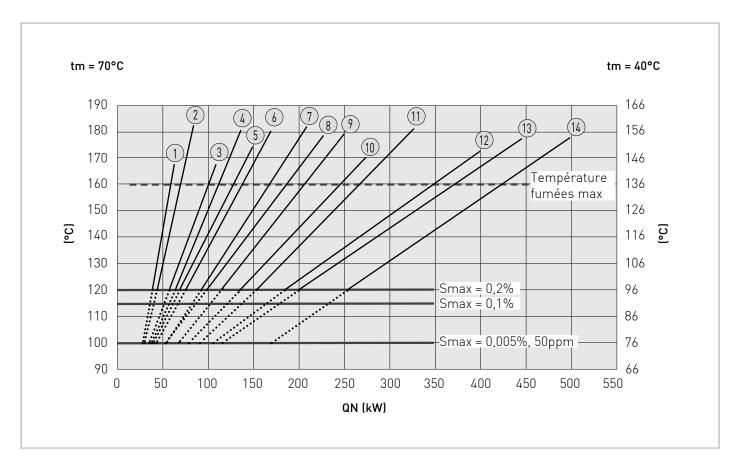
Important! La température minimale de chaudière (protection chaudière) est assurée par action des vannes 3-voies sur le débit volumique de l'eau des circuits de chauffage secondaires.

Débit volumique min. d'eau de chauffage					aucune limitation
Taux maximal en CO ₂					
(gaz sec)	au fuel au gaz na au propa	aturel E/LL ne			15,5 % 11,7 % 13,7 %
Température minimale de fumées	au fioul	teneur en S	0,005 % 0,1 % 0,2 %	50 ppm	100°C 115°C 120°C
	au gaz	teneur en S	10 mg/nm ² 150 mg/nn	3 1 ³	95°C 110°C

3.2 Dimensions

LRP NT plus		Туре	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Puissance utile		kW	65	85	110	135	150	170	210	230	250	275	325	400	450	500
Longueur chaudière	L	mm	1141	1141	1283	1283	1483	1483	1483	1742	1742	1742	1742	1998	1998	1998
Longueur socle chaudière	ı	mm	844	844	986	986	1186	1186	1186	1445	1445	1445	1445	1701	1701	1701
Largueur chaudière	В	mm	770	770	870	870	870	870	920	920	920	1000	1000	1068	1068	1068
Largueur socle chaudière *	b	mm	640	640	740	740	740	740	790	790	790	870	870	938	938	938
Hauteur chaudière	h	mm	880	880	955	955	955	955	1040	1040	1040	1120	1120	1208	1208	1208
Entr'axe bride brûleur	d1	mm	470	470	500	500	500	500	550	550	550	590	590	624	624	624
Hauteur buse de fumée	d2	mm	520	520	550	550	550	550	600	600	600	640	640	674	674	674
Distance départ / retour	S	mm	250	250	250	250	250	250	275	275	275	355	355	374	374	374
Distance purgeur / départ	s1	mm	69	69	99	99	99	99	144	144	144	144	144	144	144	144
Hauteur purgeur	n1	mm	830	830	905	905	905	905	989	989	989	1069	1069	1157	1157	1157
Ø Départ - retour PN6	k	DN	1 1/2"	1 1/2"	50	50	50	50	65	65	65	65	65	80	80	80
Ø Manchon de sécurité	q	DN	3/4"	3/4"	1"	1"	1"	1"	1 1/4"	1 1/4"	1 1/4"	1 1/4"	1 1/4"	1 1/2"	1 1/2"	1 1/2"
Hauteur départ	n	mm	757	757	835	835	835	835	900	900	900	978	978	1053	1053	1053
Hauteur retour	r	mm	757	757	835	835	835	835	933	933	933	993	993	1069	1069	1069
Longueur départ / retour	f	mm	60	60	70	70	70	70	80	80	80	80	80	90	90	90
Ø ext. buse de fumée	е	mm	150	150	150	150	150	150	200	200	200	200	200	250	250	250
Hauteur vidange	m	mm	100	100	88	88	88	88	103	103	103	104	104	104	104	104
Ø vidange		DN	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"	1"
Poids à vide 4 bar	G	kg	283	284	393	394	447	448	522	606	607	731	733	973	976	980
Poids à vide 6 bar	G	kg	294	295	404	405	470	471	542	629	630	747	749	1031	1034	1038
Poids à vide 8 bar	G	kg	310	311	430	431	531	532	617	711	712	830	832	1079	1082	1086
Poids à vide 10 bar	G	kg	328	329	478	479	541	542	617	711	712	909	911	1193	1196	1200
Capacité en eau	٧	L	130	130	185	185	220	220	260	315	315	360	360	540	540	540
Volume gaz chaudière	VG	m³	0,15	0,15	0,22	0,22	0,26	0,26	0,32	0,38	0,38	0,46	0,46	0,61	0,61	0,61
Ø Foyer	DF	mm	342	342	415	415	415	415	463	463	463	508	508	530	530	530
Longueur foyer	LF	mm	768	768	910	910	1110	1110	1107	1366	1366	1366	1366	1618	1618	1618
Volume foyer	VF	L	70,6	70,6	123,1	123,1	150,1	150,1	186,4	230	230	276,9	276,9	357	357	357

^{*} Largeur sans isolation, pour introduction en chaufferie


3.3 Technische Spezifikationen

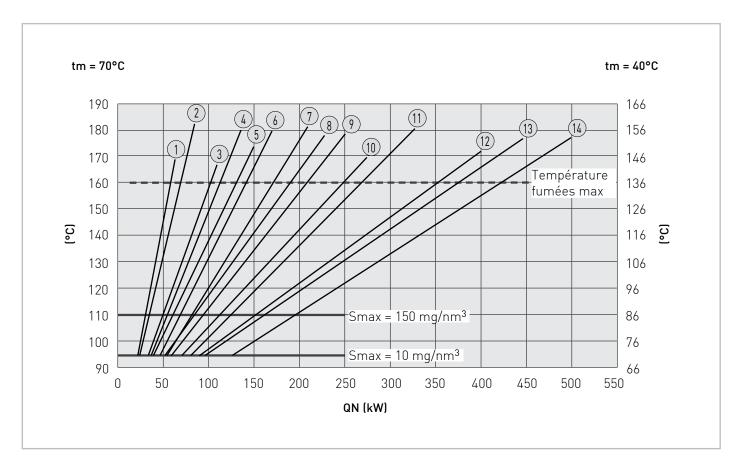
Pyronox LRP NT plus (version fioul doméstique, Low-NOx) 3.3.1

LRP NT plus			Туре	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Puissance / char	ge																
Puissance utile	max	80/60°C	kW	64	85	110	136	150	167	211	231	251	276	327	402	452	503
	min		kW	38	43	57	67	65	74	102	95	116	138	165	193	227	284
Puissance utile	max	50/30°C	kW	66	86	112	138	152	172	214	234	255	280	331	407	458	509
	min		kW	54	58	79	92	99	113	150	157	171	210	233	297	326	388
Débit calorifique	max		kW	69	92	119	147	163	181	228	250	272	297	353	432	487	541
	min		kW	56	61	83	97	104	118	157	165	179	220	244	311	341	406
Rendements																	
Rendement chaud	dière	80/60°C	%	92,9	92,2	92.8	92,4	92,3	92,2	92,6	92,5	92,5	93,0	92,6	93,0	92,8	92,9
à pleine charge, s	elon PCI	50/30°C	%	94,3	93,5	94,2	92,4	92,3	93,4	93,8	93,8	93,7	94,3	93,8	94,3	94,0	94,2
Rendement		75/60°C	%	94,7	94,9	94,9	95,0	94,8	95,0	95,2	95,0	95,2	95,3	95,4	95,3	95.4	95,9
DIN 4702-8, selon	PCI	73/60 0	70	74,/	74,7	74,7	75,0	74,0	75,0	70,2	75,0	73,2	70,3	75,4	70,0	75,4	73,7
Débits																	
Débit fioul domes	t. max		kg/h	5,6	7,3	9,4	11,6	12,8	14,5	18,1	19,7	21,5	23,6	27,9	34,4	38,7	43,0
	min		kg/h	4,8	5,1	7,0	8,2	8,8	10,0	13,3	13,9	15,1	18,5	20,6	26,2	28,8	34,2
Caractéristiques	des fumé	es															
Débit des fumées			kg/h	103	138	177	219	242	269	340	372	404	442	526	643	725	806
Surpression foyer			mbar	0,32	0,70	0,76	1,31	1,26	1,76	1,76	1,39	1,90	1,64	2,61	1,76	2,55	3,85
Temp. fumée pleir	ne charge	80/60°C	°C	159,9	180,2	166,7	176,8	180,4	182,9	175,7	177,8	178,7	166,8	176,8	167,7	172,8	170
		50/30°C	°C	137,2	155,7	141,9	152,5	156,0	161,1	151,2	153,0	154,1	141,7	152,1	142,3	147,6	145
Pertes aux fumée	s max	80/60°C	%	6,5	7,3	6,7	7,2	7,3	7,4	7,1	7,2	7,2	6,7	7,2	6,8	7,0	6,9
Température fumé	ée nécess	aire min.						sel	on le co	ombus	tible sé	election	nné				
Pertes à l'ârret																	
Pertes à l'ârret qE	3	70°C	W	338	338	435	431	440	440	526	540	540	644	644	760	761	761
Caractéristiques	hydraulid	ques															
Pertes de charge	80/70 °C	10 K	mbar	50,2	88,3	46,6	70,5	86,8	107,1	59,3	71,6	84,6	102,1	142,8	93,9	118,7	146,7
	80/60 °C	20 K	mbar	12,5	22,1	11,6	17,6	21,7	26,8	14,8	17,9	21,1	25,5	35,7	23,5	29,7	36,7
	50/40 °C	10 K	mbar	55,3	93,5	49,3	74,5	91,8	117,6	62,6	75,6	89,4	107,9	150,8	99,2	125,3	154,8
	50/30 °C	20 K	mbar	13,8	23,4	12,3	18,6	23,0	29,4	15,7	18,9	22,3	27,0	37,7	24,8	31,3	38,7
Débits d'eau	80/70 °C	10 K	m³/h	5,5	7,3	9,5	11,7	12,9	14,3	18,1	19,8	21,6	23,7	28,1	34,6	38,9	43,3
	80/60 °C	20 K	m³/h	2,8	3,7	4,7	5,8	6,4	7,2	9,1	9,9	10,8	11,9	14,1	17,3	19,4	21,6
	50/40 °C	10 K	m³/h	5,7	7,4	9,6	11,8	13,1	14,8	18,4	20,1	21,9	24,1	28,5	35,0	39,4	43,8
	50/30 °C	20 K	m³/h	2,9	3,7	4,8	5,9	6,5	7,4	9,2	10,1	10,9	12,0	14,2	17,5	19,7	21,9
		min	m³/h	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Températures																	
Température de s	ervice	max	°C	95	95	95	95	95	95	95	95	95	95	95	95	95	95
Température de s	écurité	TS	°C	110	110	110	110	110	110	110	110	110	110	110	110	110	110
aleurs selon FN30	1/ 5.																

Valeurs selon EN304 à:
- lamda 1,2, CO₂ = 12,7%
- T-air = 20°C, humidité rel. = 60%
- p-baro = 100 kPa
- PCI = 11,85 kWh/kg
- Teneur en soufre jusq'à 0,1% max.

3.3.2 Diagramme température des fumées (version fioul doméstique, Low-NOx)

Températures des fumées LRP NT plus, Low-NOx avec fioul, à chaudière propre. tm = température moyenne de l'eau de la chaudière (voir également chap. 3.4.1)



3.3.3 Pyronox LRP NT plus (version gaz naturel Low-NOx)

LRP NT plus			Туре	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Puissance / charge	е																
Puissance utile	max	80/60 °C	kW	65	85	110	135	150	161	210	230	250	275	325	400	450	500
	min	80/60 °C	kW	23	27	35	43	42	49	63	55	65	77	95	99	121	182
	max	60/40 °C	kW	66	86	111	136	151	171	212	232	252	277	328	404	454	505
	min	60/40 °C	kW	36	41	55	63	61	69	96	89	110	131	156	183	211	266
Débit calorifique	max		kW	70	93	119	147	163	176	228	250	272	297	353	433	488	542
·	min		kW	37	43	57	66	64	72	100	92	114	137	162	190	220	276
Rendements																	
Rendement chaudie	ère	80/60 °C	%	92,3	91,7	92,3	91,9	91,8	91,8	92,0	92,0	91,9	92,5	92,0	92,5	92,3	92,4
à pleine charge, sel	on PCI	60/40 °C	%	93,3	92,6	93,3	92,8	92,7	92,4	92,9	92,9	92,8	93,4	92,9	93,4	93,1	93,2
Rendement		75/60 °C	%	94,4	0/4	94,6	94,7	94,5	94,7	94,9	94,7	94,9	95,0	95,1	95,1	95,3	95,6
DIN 4702-8, selon F	PCI	/5/60 °C	70	74,4	94,6	74,0	74,/	74,3	74,/	74,7	74,/	74,7	95,0	90,1	90,1	90,3	73,0
Débits																	
Débit gaz naturel	max		nm³/h	6,6	8,6	11,1	13,7	15,1	17,1	21,3	23,3	25,3	27,8	32,9	40,5	45,6	50,6
	min		nm³/h	3,7	4,3	5,7	6,6	6,4	7,2	10,1	9,3	11,5	13,7	16,3	19,1	22,0	27,7
Caractéristiques d	e fumée	es															
Débits des fumées			kg/h	106	139	179	221	245	264	343	375	409	446	531	650	733	814
Surpression foyer			mbar	0,36	0,76	0,82	1,43	1,38	1,81	1,92	1,53	2,08	1,80	2,85	1,93	2,80	4,21
Températures fumé	ées	80/60 °C	°C	166,2	182,5	169,4	180,7	184,1	183,4	179,9	181,1	182,6	170,3	180,9	171,0	176,6	174,4
à pleine charge		60/40 °C	°C	149,7	166,3	153,0	164,6	168,0	173,6	163,7	164,7	166,3	153,7	164,6	154,1	159,9	157,8
Pertes aux fumées	max	80/60 °C	%	7,0	7,8	7,2	7,7	7,9	7,8	7,7	7,7	7,8	7,32	7,7	7,2	7,5	7,4
Température fumée	necess	aire min.	°C					seld	on le co	ombus	tible s	électio	nné				
Pertes à l'ârret																	
Pertes à l'ârret qB		70°C	W	338	338	431	431	440	440	526	540	540	644	644	760	761	761
Caractéristiques h	ydraulio	ques															
Pertes de charge	30/70 °C	10 K	mbar	51,4	87,6	46,2	69,7	86,3	100,3	58,8	70,9	83,9	101,2	141,3	93,2	117,8	145,2
	80/60 °C	20 K	mbar	12,9	21,9	11,5	17,4	21,6	25,1	14,7	17,7	21,0	25,3	35,3	23,3	29,4	36,3
	60/50 °C	C 10 K	mbar	53,6	91,2	48,0	72,4	89,7	114,8	61,0	73,7	87,2	105,1	146,8	96,8	122,3	150,8
	60/40 °C	20 K	mbar	13,4	22,8	12,0	18,1	22,4	28,7	15,3	18,4	21,8	26,3	36,7	24,2	30,6	37,7
Débits d'eau	80/70 °C	10 K	m³/h	5,6	7,3	9,4	11,6	12,9	13,9	18,1	19,8	21,5	23,6	27,9	34,4	38,7	43,0
	80/60 °C		m³/h	1,0	1,2	1,5	1,9	1,8	2,1	2,7	2,4	2,8	3,3	4,1	4,3	5,2	7,8
	60/50 °C		m³/h	5,6	7,4	9,5	11,7	13,0	14,7	18,2	19,9	21,7	23,9	28,2	34,7	39,1	43,4
	60/40 °C	C 20 K	m³/h	1,5	1,8	2,4	2,7	2,6	3,0	4,1	3,8	4,7	5,6	6,7	7,9	9,1	11,4
		min	m³/h	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Températures																	
Températures de se		max	°C	95	95	95	95	95	95	95	95	95	95	95	95	95	95
Températures de se	écurité	TS	°C	110	110	110	110	110	110	110	110	110	110	110	110	110	110

Valeurs selon EN303-3 à: - lamda 1,15, $CO_2 = 10\%$ - T-air = 20°C, humidité rel. = 60% - p-baro = 100 kPa - PCI = 9,97 kWh/nm³ - Teneur en soufre max = 10 mg/nm³

3.3.4 Diagramme température des fumées (version gaz naturel, Low-NOx)

Températures de fumées LRP NT plus, Low-NOx avec gaz naturel à chaudière propre. tm = température moyenne de l'eau de la chaudière (voir également chap. 3.4.1)

3.4 Korrekturwerte bei abweichenden Betriebsbedingungen

3.4.1 Valeurs correctives de la température des fumées (sortie chaudière)

Température moyenne de l'eau chaudière*	tm °C	40	50	60	70	80	90
Différentiel de température des fumées	Δt K	- 24	- 16	- 8	± 0	+ 8	+ 16
F		1 10	1 1 5	1 00	1 05	1.00	1.05
Exces d'air	۸ -	·	1,15				1,35
Différentiel de température des fumées	∆t K	- 6	- 3	± 0	+ 3	+ 6	+ 8

^{*} Température moyenne de l'eau chaudière = valeur moyenne de la température de départ et de retour.

3.4.2 Valeurs correctives des pertes à l'ârret

Différence température moyenne*	Δtm	°C	30	40	50	60	70
Correction de pertes à l'ârret	Δ qB	%	- 40	- 20	± 0	20	40

^{*} Différence de température moyenne = température moyenne de l'eau de la chaudière moins température de l'air ambiant.

3.4.3 Valeurs correctives de la puissance nominale selon altitude

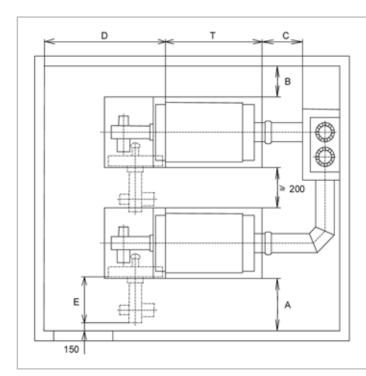
Altitude	m	500	1000	1500	2000	2500	3000
Puissance utile	%	100	95	89	83	78	74
Augmentation de résistance des fumées	%	0	5,6	13	20	28	36

3.4.4 Résistance coté eau en cas de températures particulières

Différence température	Δt K	5	10	15	20	25	30
Facteur	Х	16	4	1,77	1	0,64	0,44

4. Instructions de planification et d'installation

4.1 Local de chauffe et ventilation


Le local de chauffe doit être prééquipé conformément aux normes et aux dispositions de montage en vigueur.

Une attention particulière devra être portée à la ventilation du local

- L'arrivée de l'air comburant doit être assurée (pas de prises d'air pouvant être obturées.
- Min. volume d'air: 1,6 m³/h par kW de puissance therm.
- Min. section libre pour l'entrée de l'air comburant: 6 cm² par kW de puissance thermique.

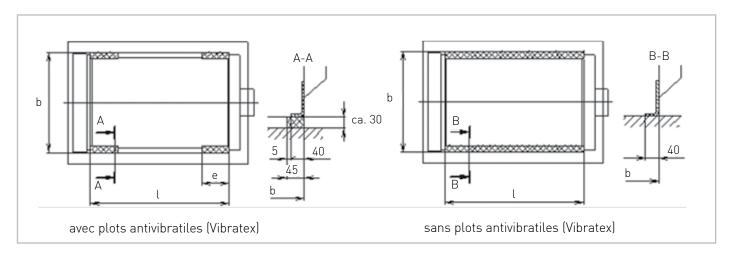
4.2 Implantation

4.2.1 Distances

- A La porte du foyer incl. brûleur monté, doit pouvoir pivoter à 90°. Tenir compte de la longueur **E** du brûleur! (A la livraison, la porte de foyer est montée pour un pivotement à droite mais elle peut être agencée sur place pour un pivotement à gauche). Pour le montage de la jaquette, un espace minimum de 200 mm doit être prévu à gauche et à droite de la chaudière.
- **B** Après le montage de la jaquette, la chaudière pourra être approchée du mur en laissant un écart d'au moins 60 mm
- **C** L'ouverture de nettoyage derrière à la chaudière doit être bien accessible. Il est recommandé une distance de min. 600 mm.
- E Longueur du brûleur

LRP NT plus		Туре	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Puissance utile		kW	65	85	110	135	150	170	210	230	250	275	325	400	450	500
Côté avant et arrière	D	mm	1220	1220	1310	1310	1310	1310	1310	1310	1310	1310	1310	1600	1600	1600
Longueur bloc chaudière	Τ	mm	1015	1015	1155	1155	1355	1355	1355	1615	1615	1615	1615	1870	1870	1870

4.2.2 Socle de chaudière


En principe, aucun socle de chaudière n'est nécessaire pour la série des Pyronox LRP NT plus.

Les socles sont opportuns dans les cas où:

- Le sol est humide, meuble ou inégal.
- La distance au sol pour le montage du brûleur est insuffisante.
- Un bac de rétention de fioul est prévu sous le brûleur.

4.2.3 Support chaudière

LRP NT plus		Туре	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Puissance utile		kW	65	85	110	135	150	170	210	230	250	275	325	400	450	500
Longueur pied chaudière	l	mm	844	844	986	986	1186	1186	1186	1445	1445	1445	1445	1701	1701	1701
Largeur pied chaudière	b	mm	640	640	740	740	740	740	790	790	790	870	870	938	938	938
Longueur Vibratex	е	mm	130	130	130	130	130	130	130	274	274	274	274	274	274	274

4.3 Mesures d'insonorisation

L'insonorisation de chaufferies situées à côté, sur ou sous des bureaux, des locaux d'habitations ou de repos, doit être particulièrement soignée.

Afin d'éviter la transmission de bruits plusieurs types de mesures sont possibles:

- Mesures constructives
- Pièges à sons sur les ouvertures d'entrée et de sortie d'air, ainsi que sur conduit de fumées
- Amortisseurs sur soubassement de chaudière
- Capot insonorissant sur brûleur
- Intégration de compensateurs entre chaudière et tuyauteries

4.3.1 Amortisseurs sur soubassement de chaudière

Les plots antivibratiles VIBRATEX proposés par YGNIS évitent la transmission des vibrations au soubassement de la chaudière et au bâtiment.

Ils sont constitués de profilés spéciaux en caoutchouc. Vous trouverez leurs dimensions et la façon de les placer au chapître 4.2.3. de cette notice.

Afin d'éviter les points de transmission il est recommandé

d'intégrer des compensateurs aux raccordements des tuyauteries du chauffage et de la cheminée.

Lors de la planification et de l'installation des raccords de tuyauterie, tenir compte du fait que lors de la mise en eau de la chaudière un "tassement" de 3-5 mm des plots est normal.

4.3.2 Capot de brûleur insonorisant

L'exploitation de générateurs de chaleur avec du fioul et/ou du gaz peut générer des bruits gênants.

Par la mise en oeuvre du capot insonorisant Ygnis le niveau sonore peut, au moins en partie, être réduit.

En cours de planification, prévoir la place supplémentaire nécessaire pour la pose et la dépose du capot.

En cas d'utilisation d'un brûleur à gaz, il est recommandé d'utiliser un capot insonorisant fabriqué sur mesure.

4.3.3 Piège à sons sur conduit de fumées

Avec la mise en place d'un piège à sons entre chaudière et cheminée, la transmission des bruits de combustion au bâtiment et/ou l'air libre, par l'intermédiaire du système d'évacuation des fumées, peut être sensiblement réduite. Du fait que les chaudières à fioul ou à gaz sont de plus en plus souvent exploitées avec de faibles températures de fumées les pièges à sons doivent être réalisés en inox. Pour éviter les vibrations mécaniques tenir compte des

- Les pièges à sons ou conduits de liaison doivent être raccordés à la chaudière au moyen de manchettes flexibles.
- La suspension ou la fixation des conduites doit se faire avec des éléments amortisseurs.
- Les traversées de cloisons ou de dalles doivent êtres isolées.

4.4 Raccordement hydraulique

détails suivants lors de l'installation:

4.4.1 Généralités

Pour le raccordement hydraulique de l'installation de chauffage et des chauffe-eau éventuels - en particulier pour ce qui concerne les dispositifs techniques de sécurité comme les soupapes de sécurité, les vases d'espansions, etc. - nous renvoyons aux règles techniques généralement reconnues, ainsi qu'aux normes et aux dispositions en vigueur.

4.4.2 Températures de fonctionnement

Les températures minimales de fonctionnement, en l'occurence de retour à la chaudière, selon chapitre 3.1 de cette documentation, sont à assurer à chaque phase de fonc-tionnement.

Ceci suppose la possibilité de maîtriser le débit volumique d'eau dans la chaudière, par ex. par action sur les vannes de régulation des circuits de chauffage secondaires.

4.4.3 Débit volumique d'eau minimal

Aucun débit volumique d'eau minimal n'est exigé dans la chaudière.

4.4.4 Centrales de chauffe en terrasse

Si les chaudières sont installées en chaufferie terrasse ou au point le plus élevé de l'installation de chauffage, elles devront être dotées de dispositifs de sécurité complémentaires (comme les sécurités contre le manque d'eau). Respecter la pression de service minimale (voir chapitre 3.1.)

Toujours respecter les dispositions de sécurité locales en vigeur.

4.4.5 Remplacement de la chaudière

Lors de l'intégration de la chaudière à une ancienne installation, nous recommandons une analyse de l'eau avec mesuration de l'oxygène. Si la qualité de l'eau requise selon SICC ne peut pas être garantie, des mesures appropriées doivent être prises (par exemple une séparation du système, remplissage, etc)

4.4.6 Séparation du système

Dans les chauffages à vases d'expansion ouverts ou trop faiblement dimensionnés, dans les chauffages au sol à tubulures non étanche à la diffusion etc. il est possible que de l'oxygène pénètre dans l'eau de chauffage et provoque des dommages par corrosion.

Si impossible d'éviter cet état de chose, des mesures supplémentaires sont nécessaires (utilisation correcte d'agents anti-oxygène ou de produits chimiques). Si une installation sans pénétration d'oxygène est impossible, une séparation au moyen d'un échangeur thermique devra être réalisée.

4.5 Installation électrique

4.5.1 Avertissements généraux

Toutes les travaux électriques de l'installation de chauffage doivent impérativement être réalisés par un électricien autorisé

Les règles techniques ainsi que les préscriptions et normes locales doivent être respectées.

Les raccordements électriques, particulièrement le raccor-

dement au réseau d'alimentation, ne seront effectués que lorsque toutes les autres opérations de montage (fixation, assemblage, etc.) auront été réalisées.

Les installations faites sur site (canaux pour les câbles, etc.) ne doivent pas être fixées aux panneaux de la chaudière!

4.5.2 Raccordement au réseau

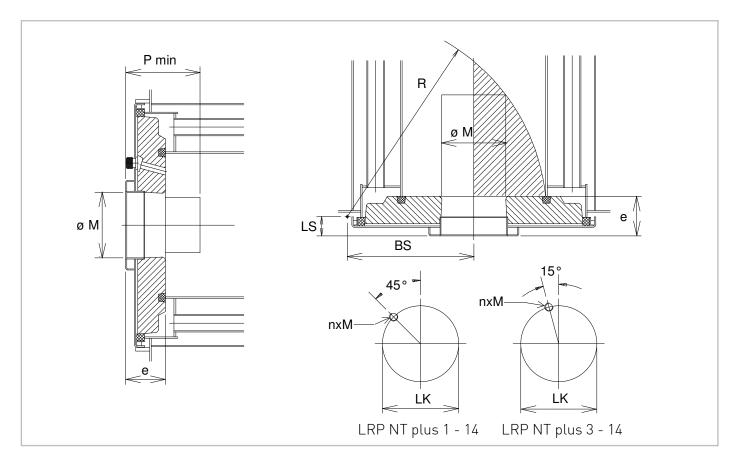
L'alimentation extérieure est du type monophasé en courant alternatif de 230V, 50Hz, max. 16A ou tripasé en courant alternatif 400VAC, 50Hz, 10A.

Le tableau de commande est protégé à l'intérieur par un fusible à action retardée de 6,3 A (brûleur/chaudière) et par un fusible additionnel à action retardée de 6,3 A pour chaque régulateur ou module supplémentaire.

Le raccordement extérieurs doivent être posés dans le chemin de câbles disposés sous le panneau supérieur de la chaudière.

Un dispositif de débranchement conforme à la norme DIN VDE 0116 devra être prévu sur place.

4.5.3 Raccordement du brûleur


Les raccordements électriques du brûleur (alimentation électrique et commande) sont effectués par le client en fonction des exigences du brûleur.

Les sets de câbles avec des connecteurs normés (DIN 4791)

de 7 et 4 pôles sont fournis avec le tableau de commande. Les brûleurs utilisés doivent être dotés de connecteurs correspondants.

4.6 Raccordement du brûleur

4.6.1 Cotes d'accouplement / Pivotement du brûleur

LRP NT plus		Ту	pe	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Foyer																	
Longueur		LF	mm	768	768	910	910	1110	1110	1107	1366	1366	1366	1366	1618	1618	1618
Diamètre		DF	mm	342	342	415	415	415	415	463	463	463	508	508	530	530	530
Volume		VF	L	70,6	70,6	123,1	123,1	150,1	150,1	186,4	230	230	276,9	276,9	357	357	357
Raccordement brûleur																	
Passage du tube brûleu	r	М	mm	140	140	190	190	190	190	212	212	212	212	212	290	290	290
Longueur tube brûleur	*min	Р	mm	130	130	130	130	140	140	140	140	140	140	140	140	140	140
	*max	Р	mm	330	330	335	335	370	370	370	390	390	390	390	440	440	440
Ø de perçage des trous		LK	mm	170	170	220	220	220	220	270	270	270	270	270	330	330	330
			mm	4xM8	, 45°					M10, 4 M12, 1						M12, 4 M12, 1	
Charge de la porte par poids du brûleur**	max	k	gxm	20	20	20	20	20	20	20	20	20	34	34	60	60	60
Pivotement du brûleur																	
Rayon de pivotement	max	R	mm	470	470	545	545	545	545	605	605	605	665	665	713	713	713
Distance axe chaudière axe de rotation	-	BS	mm	300	300	338	338	338	338	375	375	375	413	413	445	445	445
Distance bride porteaxe de rotation		LS	mm	45	45	45	45	45	45	45	45	45	45	45	45	45	45
Epaisseur bride porte		е	mm	115	115	115	115	115	115	115	115	115	115	115	116	116	116

^{*)} Longueurs gueulard brûleur sans prise en compte de bride intermédiaire.
**) Charge = poids brûleur x distance centre de gravité brûleur-porte. Suivant les besoins utiliser un support brûleur.

4.7 Système d'évacuation des fumées

4.7.1 Généralités

Les chaudières Pyronox LRP NT plus ont été conçues selon les dernières avancées de la technique.

Par une association exacte de la chaudière à la cheminée il est possible d'atteindre une exploitation optimale des combustibles et ainsi une exploitation économique.

Il faut tout particulièrement tenir compte des règles de l'art, des recommandations de la police du feu et des normes en viqueur.

4.7.2 Déterminations des sections

Les sections doivent être calculées pour les chaudières à foyer non pressurisé.

Pour définir les dimensions, les éléments particulièrement

déterminants sont le type de combustible, la puissance de l'appareil, la température et la quantité des gaz brûlés ainsi que la construction et la hauteur de la cheminée.

4.7.3 Conduit d'évacuation

Il est recommandé d'exécuter le tuyau de fumée en matériaux inoxydables. Le conduit de raccordement devra être posé et inséré dans la cheminée avec une pente de 30-45° de manière à favoriser le courant ascendant.

L'entrée doit être effectuée de façon que l'eau de condensation provenant de la cheminée ne puisse pas refluer vers la chaudière. La buse d'évacuation sera raccordée au conduit de manière étanche.

Prévoir des colliers ou autre matériau adapté pour éviter la transmission de vibrations. Les raccordements de plus de 1m de longueur doivent être isolés. Les manchons de mesure doivent dépasser de l'isolation.

La cheminée doit être étanche aux gaz et aux surpressions. Elle doit, en outre, être résistante à l'humidité et aux acides.

5. Montage sur place

5.1 Rémarques générales

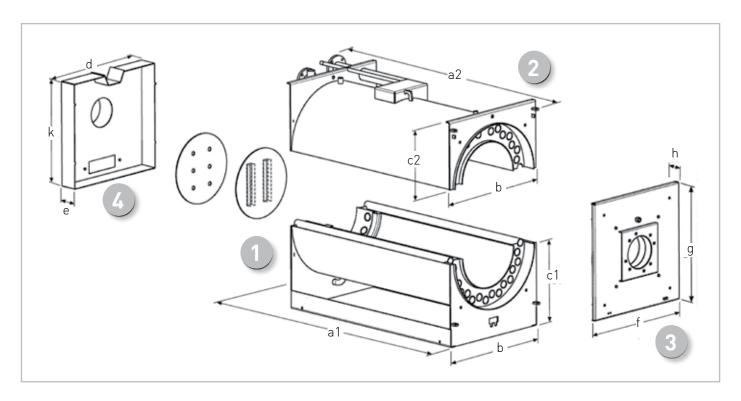
Si à cause de manque de place l'introduction est trop difficile, le transport et la livraison peuvent être effectués par éléments séparés (voir dimensions 5.2).

L'introduction du matériel dans la chaufferie doit être éffectuée par l'installateur.

Mais sur demande et contre rémunération avantageuse il est possible de faire exécuter ces travaux par YGNIS SA. Deux aides sont à mettre à disposition.

L'assemblage prêt au raccordement dans la chaufferie est effectué par notre équipe spécialisée YGNIS, selon de

sévères normes de qualités.


Nous offrons les mêmes garanties que pour une chaudière produite en usine.

À prévoir dans la chaufferie:

- Place disponible pour le montage et le soudage.
- Possibilité d'accrochage pour un palan à chaîne ou un chevalet adapté.
- Raccordement électrique 3x400V, 15A (fiche J15)
- Raccordement eau pour essais de pression.

5.2 Dimensions

LRP NT plus	Туре	7	8	9	10	11	12	13	14
Puissance utile	kW	210	230	250	275	325	400	450	500
a1	mm	1453	1712	1712	1712	1712	1968	1968	1968
a2	mm	1473	1732	1732	1732	1732	1997	1997	1997
b	mm	790	790	790	870	870	938	938	938
c1	mm	550	550	550	590	590	638	638	638
c2	mm	463	463	463	496	496	546	546	546
d	mm	740	740	740	820	820	884	884	884
k	mm	700	700	700	780	780	866	866	866
е	mm	227	227	227	227	227	227	227	227
f	mm	780	780	780	856	856	920	920	920
g	mm	780	780	780	856	856	920	920	920
h	mm	115	115	115	115	115	116	116	116
Poids pour 4 bar									
1	kg	205	245	245	299	299	413	413	413
2	kg	185	219	219	269	269	354	354	354
3	kg	33	33	33	39	39	53	53	53
4	kg	24	24	24	27	27	30	30	30

Temps de montage: 2-3 jours Poids pour 6, 8, 10 bar sur demande

6. Tableau de commande de la chaudière

6.1 Généralités

Pour la série de chaudières Pyronox LRP NT plus les deux types de tableaux de commande PYROMATIC et PYROTRONIC sont disponibles au choix.

Les deux types d'équipements sont construits de façon modulable et peuvent ainsi être assemblés en fonction des exigences spécifiques à chaque installation. Ils sont livrés, en interne, complètement câblés.

Les coffrets métalliques stables peuvent être montés sur la jaquette de la chaudière par un simple système d'encliquetage.

6.1.1 Pyromatic

Le type de désignation Pyromatic indique qu'il s'agit de tableaux de commande pilotés **thermostatiquement**.

Le boîtier en trois parties peut être équipé de modules tels que par ex. le module de sécurité module-TR2 (2ème allure de fonctionnement de brûleur) et le module-BZ/IZ (compteur d'heures de fonctionnement et d'impulsions).

En standard ils sont livrés avec un module de modes de fonctionnement et d'indications de dérangements.

Les tableaux de commande PYROMATIC sont prévus pour une

température de départ max. de 95°C (TS 110°C).

Important!

La mise en oeuvre d'un tableau de commande PYROMATIC sur la chaudière à basse température LRP NT plus sert exclusivement d'élément de sécurité.

Pour le respect des conditions de fonctionnement selon chapitre 3.1 il est nécessaire d'avoir un tableau de commande PYROTRONIC ou une régulation additionelle.

6.1.2 Pyrotronic

Le type de désignation PYROTRONIC indique qu'il s'agit de tableaux de commande pilotés **électroniquement**.

Le boîtier en trois parties permet un équipement spécifique à l'installation avec des régulateurs digitaux à microprocesseurs des plus modernes pour la régulation de chaudières, de circuits de chauffage et de production d'eau chaude sanitaire.

Chaque régulateur a sa logique qui protège la chaudière au démarrage à froid et règle de débit volumique de l'eau dans

la chaudière en fonction de sa température par action sur les vannes mélangeuses des circuits chauffage.

Tous les modes de fonctionnement et indications de dérangements sont renvoyés à des bornes.

- Par défaut, les PYROTRONIC sont prévus pour une température de fonctionnement max. de 95°C (TS 110°C).
- En option, ils peuvent être équipé avec un thermostat adapté pour une température de fonctionnement de max. 100°C.

Pyromatic

Pyrotronic

6.1.3 Régulation tierce

En cas d'utilisation d'une régulation tierce, celle-ci doit garantir obligatoirement la protection de la chaudière à chaque phase de son fonctionnement. Pour cela le débit volumique doit être réglé en fonction de la température de chaudière minimale exigée (talon de température) par prise d'influence sur les circuits avec vanne mélangeuse.

Pour cela il est nécessaire de placer dans la douille plongeuse prévue (Ø16mm x 87mm) une sonde chaudière.

La régulation tierce doit aussi garantir la température retour min. requise

Pour cela une sonde retour (sonde d'applique) doit être mise en place à l'intérieur de la chaudière sur le raccordement du retour.

Si la température minimale du retour passe en-dessous de la température talon fixée, il faut assurer la protection de la chaudière par un glissement vers le haut du talon de température.

Vous trouverez les conditions de fonctionnement dans le chapitre 3.1.

6.2 Données techniques et dimensions

6.2.1 Données de base Pyromatic

Thermostat de sécurité

Thermostat réglage brûleur allure 1

Thermostat réglage brûleur allure 2

Alimentation secteur monophasée

Alimentation secteur triphasée

3 x 400VAC, 3PNE, 50NE, 50Hz, 16A

Protection IP par boîtier

110°C

35...95°C

230VAC, 50Hz, 16A

1P40

6.2.2 Données de base Pyrotronic

Thermostat de sécurité (température maximale)

Thermostat (Plage températures d'utilisation)

Alimentation secteur monophasée

Alimentation secteur triphasée

Alimentation secteur triphasée

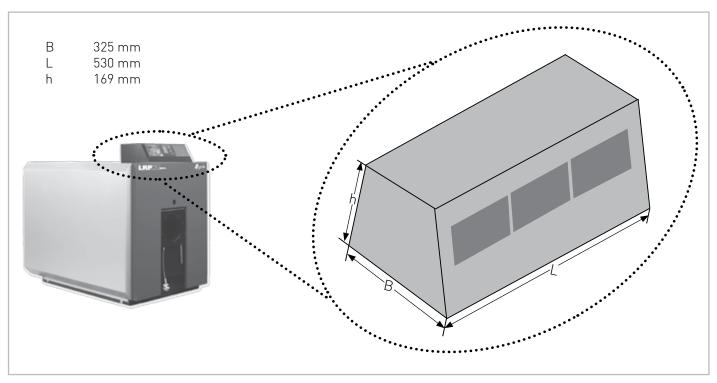
Protection IP par boîtier

Consommation en courant

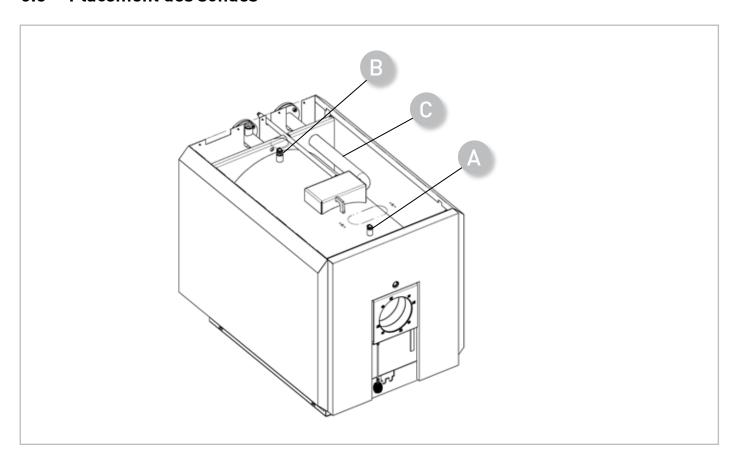
110°C

35...95°C

230VAC, 50Hz max. 16A


3 x 400VAC, 50Hz max. 16A

3 x 400VAC, 3PNE, 50Hz, 16A


IP40

En fonction des appareils branchés (brûleurs, pompes, vannes mélangeuses)

6.2.3 Dimensions

6.3 Placement des sondes

LRP NT plus avec Pyromatic

- A Thermostat de sécurité TS (douille plongeuse Ø 16 mm x 87 mm)
- B TW thermostat, sonde chaudière (douille plongeuse Ø 16 mm x 87 mm)

LRP NT plus avec Pyrotronic

- A Thermostat de sécurité TS (douille plongeuse Ø 16 mm x 87 mm)
- B TW thermostat, sonde chaudière (douille plongeuse Ø 16 mm x 87 mm)
- C Sonde retour (sonde d'applique)

Pour un contrôle externe par un système de commande

- A Thermostat de sécurité TS (douille plongeuse Ø 16 mm x 87 mm)
- B TW thermostat, sonde chaudière sonde chaudière du système de commande (douille plongeuse Ø 16 mm x 87 mm)

7. Conditions générales de fonctionnement

7.1 Combustibles

La chaudière Pyronox LRP NT plus est conçue pour fonctionner avec du fioul domestique (max. 0,1 % de teneur en soufre), gaz naturel E/LL et propane.

L'utilisation d'autres combustibles tels que le biogaz n'est permise qu'avec l'autorisation expresse du fabricant.

7.2 Air comburant

L'air comburant ne doit pas présenter de hautes concentrations en poussière.

Il doit en outre être exempt d'halogènes (chlore, composés de fluor). Une présence excessive d'halogènes dans l'air comburant entraîne une corrosion importante.

La présence maximale d'halogène autorisée dans l'air de combustion est de 5 ppm.

Les composées d'halogènes se trouvent entre autres dans les aérosols, les diluants, les détergents, les dégraisseurs et les solvants. La probabilité est en outre grande qu'il y ait des émissions d'halogènes à proximité de nettyages à sec, de salons de coiffure, de piscines, d'imprimeries et de la machines à laver placées dans la même pièce.

En cas de doute, la parfaite qualité de l'air comburant doit être assurée par une aspiration d'air externe.

Veiller à ce que les pertes de charge soient minimales car elles peuvent réduire la puissance du brûleur.

7.3 Qualité de l'eau

Il est nécessaire de tenir compte de la qualité de l'eau de remplissage et d'appoint. Une mauvaise qualité de l'eau a pour conséquence des dommages pour l'installation de chauffage par la formation de calcaire et la corrosion.

Avec de l'eau convenablement traitée il est par contre possible d'améliorer la durée de vie, la sécurité de fonctionnement et la rentabilité.

Composition de l'eau	Premier remplissage	Eaux d'appoint	Eau de chauffage
Dureté totale	< 5 ° f	< 1 °f	< 5 °f
pH (20 °C)	-	-	8,2 - 10
Phosphates (PO4)	-	-	< 30 mg/l
Chlorures (CI)	-	-	< 30 mg/l
Oxygène (O ₂)	-	-	< 0,1 mg/l
Conductibilité	< 200 µs/cm	< 100 µs/cm	< 200 µs/cm
Sulfate	-	-	< 50 mg/l
Fer dissous	-	-	< 0,50 mg/l

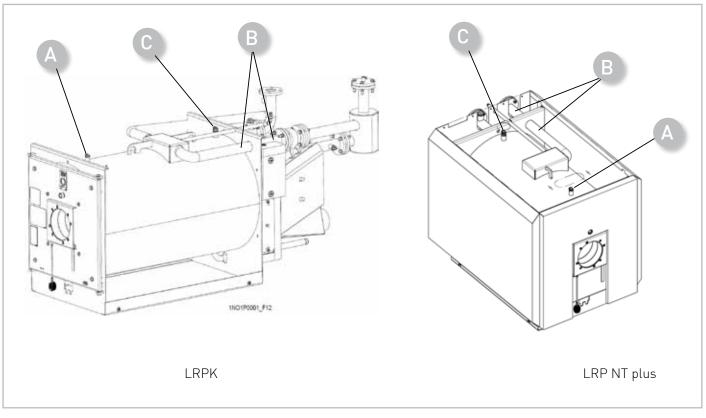
Nous vous renvoyons, de plus, aux directives SICC BT 102-01.

7.4 Protection contre la corrosion

Généralement, les installations effectuées correctement et exploitées conformément aux présentes instructions ne présentent pas de problèmes de corrosion, rendant ainsi inutile l'utilisation d'additifs chimiques.

Toutefois, en cas de mauvaise qualité de l'eau ou d'une infiltration d'oxygène de l'air dans le système de chauffage (vases d'expansion ouverts ou trop petits, tubes PER sans barrière anti-oxygène en cas de chauffage par le sol) un risque de dommages ne peut pas être exclu.

Si le liquide caloporteur doit faire l'objet d'un traitement ou d'une addition d'antigel, il est nécessaire d'en vérifier le bon dosage, l'efficacité, l'innocuité et surtout la compatibilité avec les différents matériaux qui composent l'installation. Dans ce cas, il faudra prévoir des contrôles annuels de la qualité de l'eau utilisée dans l'installation de chauffage par une société spécialisée pour éviter tout préjudice éventuel. Si une installation sans pénétration d'oxygène est impossible, une séparation au moyen d'un échangeur thermique devra être réalisée.



8. Fonction protection de la chaudière

Conditions liminaires

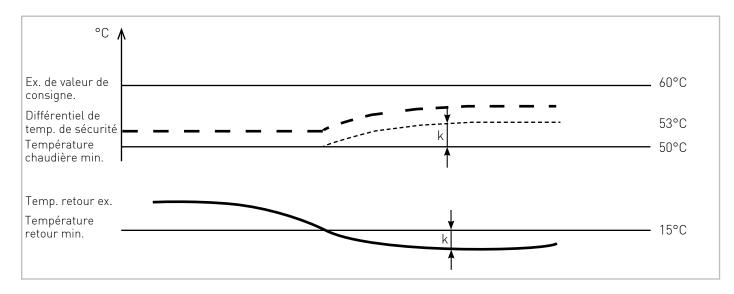
Température minimale chaudière	au fuel	50°C
	au gaz naturel E/LL propane	60°C
Température retour minimale	au fuel et gaz	15°C

Placement des sondes:

Légende: A = TS B = sonde retour

Généralement:

Les fonctions ci-dessous constituent une fonctionnalité de base du régulateur RDO. Sur une installation munie d'une régulation RDO, ces points ne revêtent pas d'importance particulière. La protection des chaudières LRPK comprend essentiellement trois points et doit être organisée comme suit:

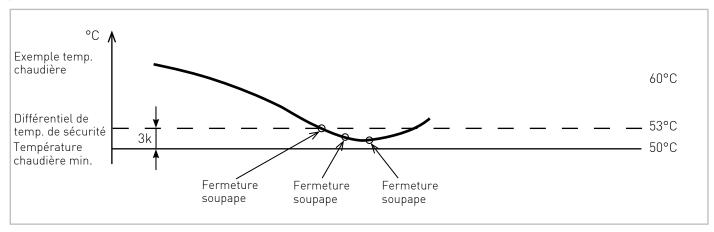

C = sonde chaudière

Point 1: Réglage de la température de retour min.

Au cas où la température de retour baisse en deçà des 15°C minimum requis, la température min. de la chaudière doit

être rehaussée de la différence entre la valeur constatée et la valeur de consigne.

Example:	Température retour. 15°C	→	Température chaudière min. 50°C
	Température retour 10°C		Température chaudière min. 55°C

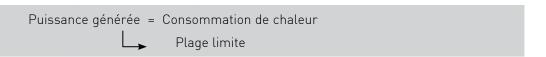

Point 2: Protection contre une baisse de la température sous la valeur de consigne minimal de la chaudière

Si la température de retour tend vers la température de chaudière minimum, le débit volumique doit être réduit progressivement après avoir atteint le différentiel de commande de sécurité (3k). En d'autres termes, la vitesse

d'abaissement de la température détermine la vitesse avec laquelle le débit volumique doit être réduit. La réduction du débit volumique peut s'effectuer via les soupapes de distribution ou uniquement via le générateur de chaleur.

Example: Si la température de la chaudière baisse lentement, les soupapes de distribution se ferment lentement. Si la température de la chaudière baisse rapidement, les soupapes de distribution se ferment rapidement.

Le régulateur RDO Elesta permet en outre d'actionner la fermeture des soupapes de distribution selon un ordre de priorité.

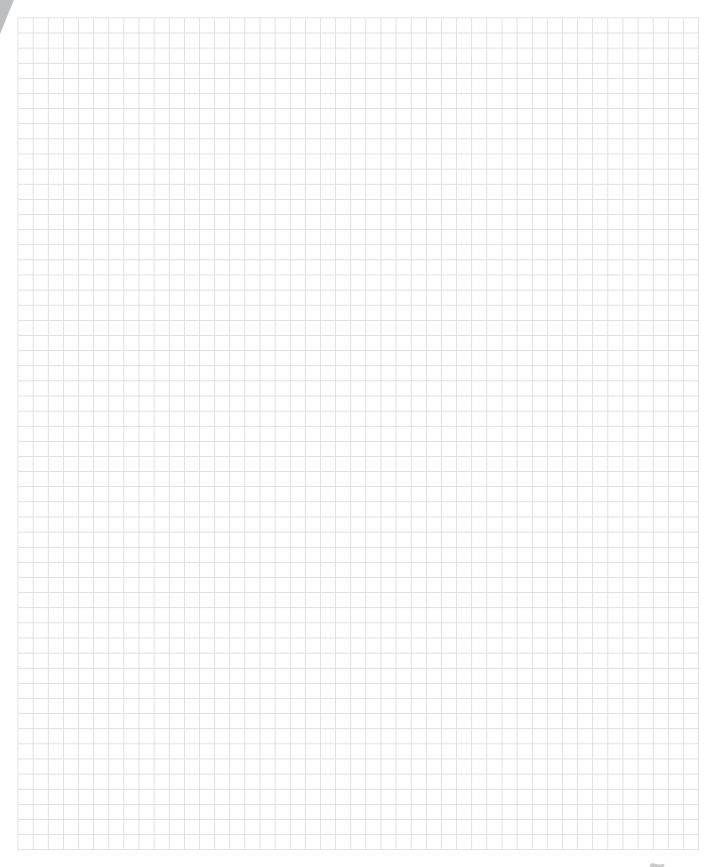


Point 3:

Problématique du brûleur 2 allures

À la suite de la fermeture des soupapes de distribution, il se peut que la puissance générée par le brûleur à l'allure 1 coïncide avec la consommation de chaleur.

La chaudière peut ainsi rester très longtemps dans la plage limite.


Afin d'éviter cela, la valeur consigne de la température des groupes de chauffage est vérifiée et, en cas de sous-dépas-

sement, l'allure 2 du brûleur est alors activée.

Important:

Les points 1 à 3 fonctionnent indépendamment les uns des autres et s'autorégulent en fonction des différentes situations. Ils peuvent être simultanément actifs.

Notes

YGNIS AG

Chaudières et chauffe-eau Wolhuserstrasse 31/33 6017 Ruswil CH Tél.: +41 (0) 41 - 496 91 20 Fax: +41 (0) 41 - 496 91 21 E-Mail: info@ygnis.com

www.ygnis.ch

