

PYRONOX LRR 53 - 59

Chaudière en acier pour mazout et gaz de 3'300 à 9'700 kW

- Corps de chaudière en acier noir
- Concept: Installation optimisée
- Raccordement hydraulique facile
- Version sectionnée pour une introduction simple
- Pression de service 6 bars (4, 8 et 10 sur demande)

Sous réserve de toutes modifications techniques et de la construction!

© Ygnis AG, CH-6017 Ruswil

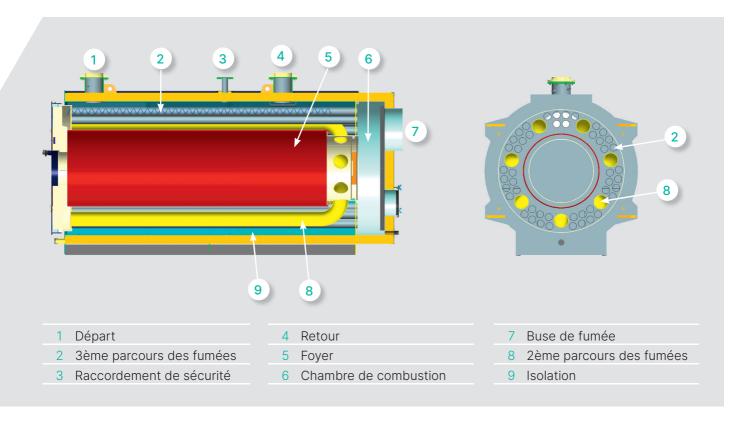
Documentation technique Pyronox LRR / f / Version 05/2022

SOMMAIRE

1	Desc	cription	4
	1.1	Conception et caractéristiques particulières	Δ
	1.2	Certificats et homologations	Ę
2	Éten	due de la livraison	6
	2.1	Équipements standards	6
	2.2	Options	6
3	Cara	ctéristiques techniques	7
	3.1	Données de base / conditions liminaires	7
	3.2	Dimensions version standard	3
	3.3	Dimensions version spéciale	9
	3.4	Spécifications techniques	10
	3.5	Valeurs correctives en cas de conditions de fonctionnement différentes	14
4	Instr	uctions pour l'installation	15
	4.1	Local de chauffe et ventilation	15
	4.2	Implantation	15
	4.3	Mesures d'insonorisation	17
	4.4 4.5	Raccordement hydraulique Installation électrique	18 19
	4.5	Raccordement brûleur et ARF (recyclage des gaz)	20
	4.7	Système d'évacuation des fumées	2
	4.8	Turbulateurs	22
5	Mon	tage sur place	23
	5.1	Remarques générales	23
	5.2	Dimensions	24
6	Réau	ulations	25
	6.1	Thermostat double (CT/TS)	25
7	Cond	ditions générales de fonctionnement	25
	7.1	Combustibles	25
	7.2	Air comburant	25
	7.3	Qualité de l'eau	26
	7.4	Protection contre la corrosion	26
8	Main	itenance	27
	8.1	Contrôles périodiques et travaux d'entretien	27
	8.2	Nettoyage de la chaudière	27
	8.3	Entretien du brûleur	27

1. DESCRIPTION

1.1 CONCEPTION ET CARACTÉRISTIQUES PARTICULIÈRES


Les chaudières de la gamme Pyronox LRR 53–59 sont des **chaudières à haut rendement**, économisant l'énergie, dont la gamme de puissance s'étend de 3'300 à 9'700 kW. Elles sont adaptées au fonctionnement avec des brûleurs au fioul domestique ou au gaz à air soufflé.

Les chaudières Pyronox LRR 53-59 sont des chaudières à tubes de fumées à **triple parcours de technologie low-NOx-Technologie**.

La géométrie du foyer adaptée à cette technologie et sa

faible charge spécifique associées au système de développement de la flamme breveté par Ygnis, assurent des taux d'émission très faibles et un fonctionnement conforme à la réglementation de l'administration.

De hautes exigences en matière de valeurs limites d'émissions et des technologie de brûleurs différentes exigent néanmoins dans chaque cas particulier une préconisation et une définition particulière du brûleur et de la chaudière.

Pour les types LRR 53-55 **le recyclage des gaz (ARF)** vers la porte du foyer se fait par l'extérieur du foyer pressurisé. Pour les types LRR 56-59 il doit être réalisé sur place.

Le **troisième parcours des fumées** est doté de turbulateurs. Leur présence augmente l'échange de chaleur et permet un fonctionnement avec des températures de fumées basses, garantissant une exploitation optimale du combustible.

L'importante **isolation thermique** de 100 mm en fibre de verre garantit de très faibles pertes à l'arrêt.

Les portes des chaudières sont équipées d'un panneau calorifuge en matériau d'isolation incombustible.

Les avantages exceptionnels de ce matériau sont la faible conductivité et capacité thermique.

Cela conduit en plus à une diminution appréciable des pertes d'entretien.

L'ouverture pivotante de la porte permet d'atteindre facilement les parties de la chaudière en contact avec des fumées. Cela permet un nettoyage aisé du foyer et des tubes par l'avant de la chaudière.

Les turbulateurs sont retirables. Le collecteur de fumées en partie arrière de la chaudière est doté d'une **ouverture pour le nettoyage.**

Il est de plus possible d'obtenir, en tant qu'exécution spéciale, une **version en éléments séparés** qui grâce à leur plus faible encombrement conviennent particulièrement pour les chaufferies d'accès difficile.

Les éléments séparés doivent être soudés sur place (voir chapître 5: Montage sur place).

1.2 CERTIFICATS ET HOMOLOGATIONS

Cet appareil est conforme aux directives suivantes:

Directive basse tension 73/23/CEE Certificat CE: CE 0461 / AR0148

Directive compatibilité électromagnétique 89/336/CEE No. AEAI: 16506

Directive rendement 92/42/CEE

Directive appareil à gaz 90/396/CEE

2. ÉTENDUE DE LA LIVRAISON

2.1 EQUIPEMENTS STANDARDS

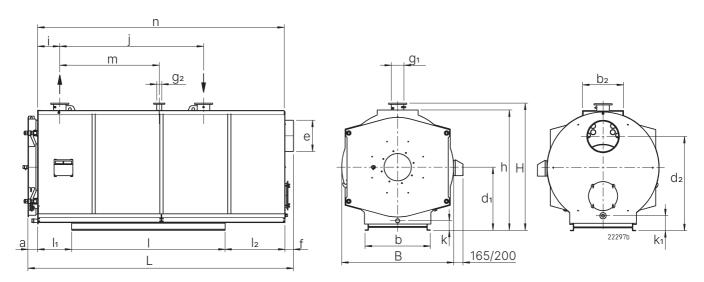
- Corps de chaudière avec pression de service 6 bar
- Corps de chaudière avec boîte et buse de fumée en acier noir
- Porte de foyer étanche, pivotant à gauche ou à droite, avec raccord brûleur
- Viseur de foyer intégré dans la porte de la chaudière
- Raccords de départ, retour et de sécurité avec brides, contre brides, joints et vis
- Raccords de remplissage et de vidange

- Turbulateurs pour tubes de fumée
- Isolation de la chaudière, par fibre de verre de 100 mm sous jaquette en tôle
- Passerelle sur toute la longueur de la chaudière
- Matériau isolant du gueulard brûleur (livré séparément)
- Kit de nettoyage
- Notice d'installation et d'entretien

2.2 OPTIONS

- Recyclage des fumées (ARF)
- Version sectionnée, montage sur place
- Pression de service 4, 8 ou 10 bars sur demande
- Buse de fumée verticale
- Isolation frontale
- Capot insonorisant
- Isolation et carénage sur place

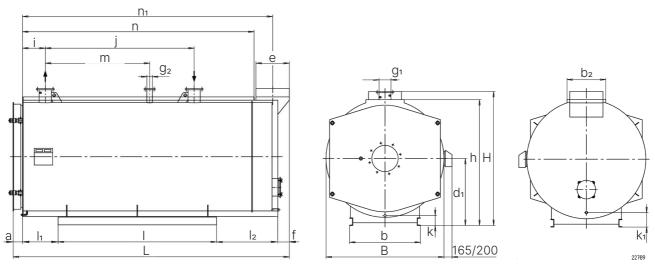
- Tableau de commande
- Console de tableau de commande avec canal de câbles
- Plots antivibratiles VIBRATEX
- Piédestal de chaudière avec échelle d'acces
- Thermostat double


3. CARACTÉRISTIQUES TECHNIQUES

3.1 DONNÉES DE BASE / CONDITIONS LIMINAIRES

Pression de service max. (4, 8, 10 bars sur dema	nde)			6,0 bars
Pression de service min.	LRR 53-55			1,8 bars
	LRR 56-59			2,2 bars
Pression d'essai				9,0 bars
Brides départ et retour chaudière	4 et 6 bar			PN6
	8 et 10 bar			PN16
Température de sécurité (TS)				110°C
Température départ max.				95°C
Température de fonctionnement min.	avec mazout léger/eco			60°C
	avec gaz naturel ou propa	ne		70°C
Température retour min.	avec mazout léger/eco			50°C
	avec gaz naturel ou propa	ne		60°C
Taux CO₂ max. (gaz sec)	avec mazout			15,5 %
	avec gaz naturel			11,7 %
	avec propane			13,7 %
Température des fumées min.	avec mazout, teneur en S	0,005%	50 ppm	100°C
		0,05 %		110°C
		0,1%		115°C
		0,2%		120°C
	avec gaz, teneur en S	10 mg/nm ³		95°C
		150 mg/nm	3	110°C

3.2 DIMENSIONS VERSION STANDARD


LRR		Туре	53	54	55	56	57	58	59
Puissance nominale		kW	3'300	4'000	4′700	5′600	6′700	8′100	9'700
Longueur châssis chaudière	I	mm	2'700	2'850	3'200	4'110	4'510	4'912	5'412
Largeur châssis chaudière	b	mm	1'150	1'290	1'350	1'520	1'610	1'670	1′730
Hauteur bloc chaudière	h	mm	2'105	2'320	2'435	2'740	2'895	3'005	3'100
Épaisseur porte chaudière	а	mm	170	170	170	212	212	212	212
Hauteur raccord brûleur	d ₁	mm	1'110	1'225	1′285	1'450	1'530	1'590	1'640
Hauteur buse de fumée	d ₂	mm	1'660	1'850	1′940	21′20	2'280	2'390	2'460
ø Buse de fumée extérieur	е	mm	550	600	650	700	750	850	900
Longueur buse de fumée	f	mm	150	150	150	150	150	150	150
ø Raccord départ - retour PN6	g ₁	DN	200	200	200	250	250	300	300
Distance façade - départ	i	mm	390	410	450	495	540	590	645
Distance départ - retour	j	mm	2'530	2'677	2'920	3'160	3'430	3'740	4'120
ø Raccordement de sécurité PN16	g ₂	DN	80	80	100	100	100	125	125
Distance départ chauffage - raccordement de sécurité	m	mm	1'751	1'855	2'024	2'190	2'370	2'590	2'850
Hauteur raccord	k	mm	167	182	187	135	140	150	127
alimentation - vidange	K	DN	2"	2"	2"	65	65	65	80
Hauteur écoulement	k ₁	mm	264	279	284	335	340	350	360
boîte de fumée	Ν1	DN	11⁄4"	11⁄4"	11⁄4"	2"	2"	2"	2"
Distance façade - châssis chaudière	l ₁	mm	600	640	650	-	-	-	-
Distance châssis - fin chaudière	l ₂	mm	1′050	1'100	1'140	1'299	1'349	1'489	1'590
Largeur passerelle	b ₂	mm	700	700	700	750	800	850	850
Longeur passerelle	n	mm	4'350	4'590	4'990	5'409	5'859	6'401	7'002
Longueur totale	L	mm	4'670	4'910	5'310	5'771	6'221	6'763	7'364
Largeur chaudière	В	mm	1'970	2'170	2'280	2'560	2'710	2'810	2'900
Hauteur bride départ - retour	Н	mm	2'235	2'450	2'565	2'870	3'025	3'135	3'230
Poids chaudière (vide) 6 bars	G	kg	7'025	8'425	10'075	13'545	16'040	18'620	21'900
Volume d'eau chaudière	V	I	3'805	5'385	6'060	9'300	114'00	13'300	15'120
Volume gaz chaudière	VG	I	5'870	7'380	9'450	11'640	14'250	17'240	20'720
Diamètre foyer	DF	mm	1′020	1'110	1′220	1'270	1'350	1′430	1'500
Longueur foyer	LF	mm	3'765	3'980	4'360	4'690	5'090	5'550	6'120
Volume foyer	VF	m³	2,96	3,72	4,95	5,78	7,12	8,73	10,58

3.3 DIMENSIONS VERSION SPÉCIALE

Les modèles de la version spéciale ci-dessous (Sortie fumée verticale et pressions de service diférentes) sont disponibles sur demande et ont des délais de livraison plus longs!

Leurs dimensions et performances sont identiques à celles de la version standard à 6 bar, mais les poids sont différents (voir 3.3.2) et les brides des retours et départs des versions en 8 et 10 bar sont PN16.

3.3.1 Sortie fumée verticale

LRR Puissance nominale		Type kW	53 3′300	54 4'000	55 4'700	56 5′600	57 6′700	58 8'100	59 9'700
ø Buse de fumée extérieur	е	mm	172	200	220	229	249	287	307
Position buse de fumée	n¹	mm	4'235	4'477	4'872	5'277	5'722	6'254	6'849
Longeur passerelle	n	mm	3'940	4'157	4527	4'905	5'325	5'807	6'377
Longueur totale	L	mm	4'695	4'960	5'380	5'850	6'320	6'900	7'520

Les autres dimensions sont identiques à celles de la version standard, chapître 3.2, page 8.

3.3.2 Pressions de service différentes

Les chaudières de la gamme Pyronox LRR peuvent aussi être exécutées pour les pressions de service de 4, 8 et 10 bars. Les poids sont différents de ceux de la version standard (6 bars).

LRR Puissance nominale		Type kW	53 3′300	54 4'000	55 4′700	56 5′600	57 6'700	58 8'100	59 9'700
Poids chaudière (vide) 4 bars	G	kg	6'332	7'891	9'566	12'116	14'717	17'295	20'358
Poids chaudière (vide) 8 bars	G	kg	7'521	9'258	11'184	14'458	17'181	20'174	23'220
Poids chaudière (vide) 10 bars	G	kg	8'225	9'907	11'923	16'022	18'574	21'378	24'574

3.4 SPÉCIFICATIONS TECHNIQUES

3.4.1 PYRONOX LRR 53 - 59 (mazout, version Low-NOx)

LRR			Туре	53	54	55	56	57	58	59
Puissance / Charge										
Puissance nominale qN*	max.	80/60°C	kW	3'300	4'000	4'700	5'600	6'700	8′100	9'700
	²min.	80/60°C	kW	1′600	2'060	2'556	2'876	3'376	4'079	5′117
	³min.	80/60°C	kW	1′317	1′700	2′134	2'369	2'837	3'429	4'243
Puissance de chauffe qF*	max.		kW	3'582	4'341	5'079	6'052	7'249	8'756	10449
	²min.		kW	1′684	2′127	2'641	3'026	3′552	4'290	5′381
	³min.		kW	1′379	1′780	2'235	2'481	2'972	3′590	4'441
Rendements										
Rendement total qF	100%	60/80°C	%	92,1	92,1	92,5	92,5	92,4	92,5	92,8
	³ 30%	50/70°C	%	95,4	95,5	95,4	95,4	95,5	95,5	95,5
	³min.	60/80°C	%	95,5	95,5	95,5	95,5	95,5	95,5	95,5
Rendement DIN 4702-8	³ŋN	60/75°C	%	95,2	95,2	95,3	95,3	95,3	95,3	95,4
Débits										
Débit mazout domestique	¹max.		kg/h	302,3	366,3	428,6	510,7	611,7	738,9	881,8
	^{1,3} min.		kg/h	116,4	150,2	188,6	209,4	250,8	303,0	374,8
Caractéristiques des fumées										
Débit des fumées	max.		kg/s	1,54	1,87	2,19	2,61	3,12	3,77	4,50
	^{1,3} min.		kg/s	0,59	0,77	0,96	1,07	1,28	1,55	1,91
Surpression foyer	max.		mbar	7,91	7,78	7,99	9,44	11,38	13,84	16,08
Température fumées	max.	80/60°C	°C	182	181	173	173	175	174	167
	²min.	80/60°C	°C	120	120	120	120	120	120	120
	³min.	80/60°C	°C	110	110	110	110	110	110	110
	4min.	80/60°C	°C	100	100	100	100	100	100	100
Perte aux fumées	max.	80/60°C	%	7,8	7,7	7,4	7,4	7,5	7,4	7,1
Pertes à l'arrêt										
Pertes à l'arrêt qB		70°C	W	2'724	3'413	3'827	4'511	5'118	5'582	6'043
Caractéristiques hydrauliques										
Pertes de charge	15 K		mbar	59	86	119	66	94	71	102
	20 K		mbar	33	49	67	37	53	40	57
Débits d'eau	max.		m³/h	218	258	309	361	424	493	573
	min.		m³/h	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Températures de service										
Température départ	max.		°C	95	95	95	95	95	95	95
Température de sécurité	TS		°C	110	110	110	110	110	110	110

^{*}L'offre de différentes technologies de brûleurs nécessite pour chaque cas particulier le contrôle des performances.

Valeurs selon EN304:

⁻ lamda 1,2, CO₂ = 12,7% - T-air = 20°C, humidité rél. - p-baro = 100 kPa

¹ $Hu = 11,85 \, kWh/kg$

² Teneur en soufre jusqu'à max. 0,2 %

³ Teneur en soufre jusqu'à max. 0,05 % (500 ppm)

⁴ Teneur en soufre jusqu'à max. 0,005% (50 ppm)

3.4.2 PYRONOX LRR 53 - 59 (gaz naturel, version Low-NOx)

LRR			Туре	53	54	55	56	57	58	59
Puissance / Charge										
Puissance nominale qN*	max.	80/60°C	kW	3'300	4'000	4'700	5'600	6'700	8′100	9'700
	min.	80/60°C	kW	827	1'169	1'466	1'571	1'882	2'275	2'917
Puissance de chauffe qF*	max.		kW	3'586	4'346	5'085	6'059	7'257	8'764	10'459
	³min.		kW	861	1'217	1′526	1′636	1′959	2'366	3'033
Rendements										
Rendement total qF	100 %	80/60°C	%	92,0	92,0	92,4	92,4	92,3	92,4	92,7
	30%	80/60°C	%	95,8	96,0	96,1	95,9	95,9	96,0	96,1
	min.	80/60°C	%	96,0	96,1	96,1	96,0	96,1	96,1	96,2
Rendement DIN 4702-8	³ŋN	80/60°C	%	95,4	95,4	95,6	95,5	95,5	95,6	95,7
Débits										
Débit gaz naturel	¹,²max.		nm³/h	359,9	436,1	510,2	608,0	728,0	879,0	1′050
	^{1,2} min.		nm³/h	86,4	122,1	153,1	164,0	197,0	237,0	304,0
Caractéristiques des fumées										
Débit des fumées	max.		kg/s	1,50	1,81	2,12	2,53	3,03	3,66	4,37
	^{1,3} min.		kg/s	0,36	0,51	0,64	0,68	0,82	0,99	1,27
Surpression foyer	max.		mbar	8,06	7,93	8,14	9,62	11,60	14,10	16,38
Température fumées	max.	80/60°C	°C	182	182	174	174	176	174	167
	³min.	80/60°C	°C	95	95	95	95	95	95	95
Perte aux fumées	max.	80/60°C	%	7,9	7,9	7,5	7,5	7,6	7,5	7,2
Pertes à l'arrêt										
Pertes à l'arrêt qB		70°C	W	2'724	3'413	3'827	4'511	5'118	5'582	6'043
Caractéristiques hydrauliques										
Pertes de charge	15 K		mbar	59	86	119	66	94	71	102
	20 K		mbar	33	49	67	37	53	40	57
Débits d'eau	max.		m³/h	218	258	309	361	424	493	573
	min.		m³/h	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Températures de service										
Température départ	max.		°C	95	95	95	95	95	95	95
Température de sécurité *L'offre de différentes technologies of	TS de brûleurs	nécessite no	°C ur chaque	110 e cas part	110 iculier le d	110 contrôle d	110 es perfori	110	110	110

^{*}L'offre de différentes technologies de brûleurs nécessite pour chaque cas particulier le contrôle des performances.

Valeurs selon EN303-3:

⁻ lamda 1,15, CO_2 = 10 %

⁻ T-air = 20 °C, rel. humidité rél. = 60 % - p-baro = 100 kPa

¹ Hu = $9,97 \, \text{kWh/nm}^3$

² nm³ bei 0°C, 1013 mbar 3 Teneur en soufre max. 10 mg/nm³

3.4.3 PYRONOX LRR 53 - 59 (mazout, version Low-NOx), avec recyclage des fumées (ARF)

LRR			Туре	53	54	55	56	57	58	59
Puissance / Charge					RF monté e de la ch	à naudière		Al monté s	RF ur place	
Puissance nominale qN*	⁵max.	80/60°C	kW	3'225	3'980	4'700	5'600	6'700	8'100	9'700
	^{2,5} min.	80/60°C	kW	1'294	1′649	2'121	2'380	2'800	3'400	4'300
	³,5min.	80/60°C	kW	1′059	1′325	1'671	1'906	2'215	2'676	3'345
Puissance de chauffe qF*	max.		kW	3'510	4'332	5'103	6'076	7'269	8'772	10'468
	²min.		kW	1′361	1′734	2′232	2′503	2'945	3′572	4'518
	³min.		kW	1′110	1′387	1′750	1′997	2'320	2'802	3′500
Rendements										
Rendement total qF	max.	60/80°C	%	91,9	91,8	92,1	92,2	92,2	92,3	92,7
	330%	50/70°C	%	95,4	95,5	95,5	95,4	95,5	95,5	95,6
Débits										
Débit mazout domestique	¹max.		kg/h	296,2	365,6	430,6	512,8	613,6	740,2	883,4
	^{1,3} min.		kg/h	93,7	117,1	147,7	168,5	195,8	236,4	295,4
Caractéristiques des fumées										
Débit des fumées	max.		kg/s	1,51	1,87	2,20	2,62	3,13	3,78	4,51
	³min.		kg/s	0,48	0,60	0,75	0,86	1,00	1,21	1,51
Surpression foyer	max.		mbar	9,68	9,80	10,17	12,15	14,60	17,66	20,53
Température fumées	max.	80/60°C	°C	188	188	183	182	182	178	171
	²min.	80/60°C	°C	120	120	120	120	120	120	120
	³min.	80/60°C	°C	110	110	110	110	110	110	110
	4min.	80/60°C	°C	100	100	100	100	100	100	100
Perte aux fumées	max.	80/60°C	%	8,0	8,0	7,8	7,7	7,7	7,6	7,3
Pertes à l'arrêt										
Pertes à l'arrêt qB		70°C	W	2'724	3'413	3'827	4'511	5'118	5'582	6'043
Caractéristiques hydrauliques										
Pertes de charge	15 K		mbar	57	85	119	66	94	71	102
	20 K		mbar	32	48	67	37	53	40	57
Débits d'eau	max.		m³/h	218	258	309	361	424	493	573
	min.		m³/h	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Températures de service										
Température départ	max.		°C	95	95	95	95	95	95	95
Température de sécurité	TS		°C	110	110	110	110	110	110	110
#1/ CC 1:CC/ 1 1 1 1	1 41	, .,	1			. ^	•			

^{*}L'offre de différentes technologies de brûleurs nécessite pour chaque cas particulier le contrôle des performances.

Valeurs selon EN304:

⁻ lamda 1,2, CO₂ = 12,7 %

⁻ T-air = 20 °C, humidité rel. = 60 %

⁻ p-baro = 100 kPa

¹ Hu = 11,85 kWh/kg 2 Teneur en soufre jusqu'à max. 0,2%

³ Teneur en soufre jusqu'à max. 0,05 % (500 ppm)

⁴ Teneur en soufre jusqu'à max. 0,005 % (50 ppm)

⁵ Avec 15 % récirculation des fumées, débit constant à charge partielle

3.4.4 PYRONOX LRR 53 - 59 (gaz naturel, version Low-NOx), avec recyclage des fumées (ARF)

LRR			Туре	53	54	55	56	57	58	59
Puissance / Charge					onté à l'e la chaud			ARF monté sur place		
Puissance nominale qN*	max.	80/60°C	kW	3'130	3'910	4'700	5'600	6'700	8'100	9'700
	min.	80/60°C	kW	654	833	1'048	1'105	1'324	1'683	2'110
Puissance de chauffe qF*	max.		kW	3'406	4'256	5'109	6'083	7'276	8'780	10'477
	³min.		kW	681	868	1′092	1′151	1′379	1′753	2'196
Rendements										
Rendement total qF	max.	60/80°C	%	91,9	91,9	92,0	92,1	92,1	92,3	92,6
	30%	60/80°C	%	95,6	95,8	96,0	95,6	95,5	95,6	95,7
Débits										
Débit gaz naturel	^{1,2} max.		nm³/h	341,9	427,1	512,6	610,0	730,0	881,0	1'051
	^{1,2} min.		nm³/h	68,4	87,1	109,6	116,0	138,0	176,0	220,0
Caractéristiques des fumées										
Débit des fumées	max.		kg/s	1,42	1,78	2,13	2,54	3,04	3,67	4,37
	³min.		kg/s	0,28	0,36	0,46	0,48	0,58	0,73	0,92
Surpression foyer	max.		mbar	9,26	9,61	10,36	12,39	14,87	18,00	20,91
Température fumées	max.	80/60°C	°C	186	187	184	182	182	178	172
	³min.	80/60°C	°C	95	95	95	95	95	95	95
Perte aux fumées	max.	80/60°C	%	8,0	8,0	7,9	7,8	7,8	7,7	7,3
Pertes à l'arrêt										
Pertes à l'arrêt qB		70°C	W	2′724	3'413	3'827	4'511	5'118	5'582	6'043
Caractéristiques hydrauliques										
Pertes de charge	15 K		mbar	53	85	119	66	94	71	102
	20 K		mbar	30	48	67	37	53	40	57
Débits d'eau	max.		m³/h	218	258	309	361	424	493	573
	min.		m³/h	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Températures de service										
Température départ	max.		°C	95	95	95	95	95	95	95
Température de sécurité	TS		°C	110	110	110	110	110	110	110

^{*}L'offre de différentes technologies de brûleurs nécessite pour chaque cas particulier le contrôle des performances.

Valeurs selon EN303-3:

- lamda 1,15, $CO_2 = 10 \%$
- T-air = 20 °C, humidité rel. = 60 %
- -p-baro = 100 kPa
- 1 Hu = $9,97 \, \text{kWh/nm}^3$
- 2 nm³ bei 0 °C, 1013 mbar
- 3 Teneur en soufre max. 10 mg/nm³
- 4 Avec 15 % récirculation des fumées, débit constant à charge partielle

3.5 VALEURS CORRECTIVES en cas de conditions de fonctionnement différentes

3.5.1 Valeurs correctives des températures fumées

Différence température fumées $\Delta t \ K - 16 - 8 \pm 0 + 8 + 16 + 24$ Excès d'air $\lambda - 1,10 \ 1,15 \ 1,20 \ 1,25 \ 1,30 \ 1,35$	Température moyenne de l'eau de chaudière*	tm	°C	50	60	70	80	90	100
					- 8	+ 0	+ 8	+ 16	+ 2/
Excès d'air λ - 1.10 1.15 1.20 1.25 1.30 1.35	Difference temperature funices	Δι	IX	10	0	± 0	, 0	1 10	1 24
	Excès d'air	λ	_	110	115	120	125	1.30	135
Différence température fumées $\Delta t \ K - 6 - 3 \pm 0 + 3 + 6 + 8$, -	, -	, -	, -	. 0	. 0

^{*}Température moyenne de l'eau de chaudière = valeur moyenne de la température de départ et de retour

3.5.2 Valeurs correctives des pertes à l'arrêt

Différence température moyenne*	Δtm	°C	30	40	50	60	70
Correction pertes à l'arrêt	ΔqB	%	- 40	- 20	± 0	+ 20	+ 40

^{*}Différence température moyenne = Température moyenne de l'eau de chaudière moins température de air ambiant

3.5.3 Valeurs correctives de la puissance nominale selon altitude

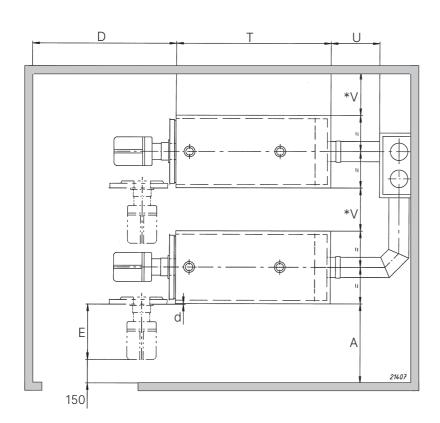
Altitude	m	500	1000	1500	2000	2500	3000
Correction puissance nominale	%	100	95	89	83	78	74
Augmentation résistance fumées	%	0	5,6	13	20	28	36

3.5.4 Résistance côté eau en cas de différences de température divergentes

Différence température	Δt K	5	10	15	20	25	30
Facteur	Х	16	4	1,77	1	0,64	0,44

4. INSTRUCTIONS POUR L'INSTALLATION

4.1 LOCAL DE CHAUFFE ET VENTILATION


Le local chaudière doit être pré équipé conformément aux normes et aux dispoisitions de montage en vigueur.

Une attention particulière devra être portée à la ventilation du local.

- L'arrivé de l'air comburant doit être assurée (pas de prises d'air pouvant être obturées).
- Volume de renouvellement d'air doit être au moins:
 1,6 m³/h par kW thermique installé.
- Section libre minimale pour l'entrée de l'air comburant:
 6 cm² par kW puissance thermique.

4.2 IMPLANTATION

4.2.1 Distances

Sur demande, la chaudière est livrée avec une porte pivotant à gauche.

La porte du foyer, y compris le brûleur, doit pouvoir pivoter de 90°.

$$A = E + d + 150 \text{ mm}$$

E = Longueur brûleur

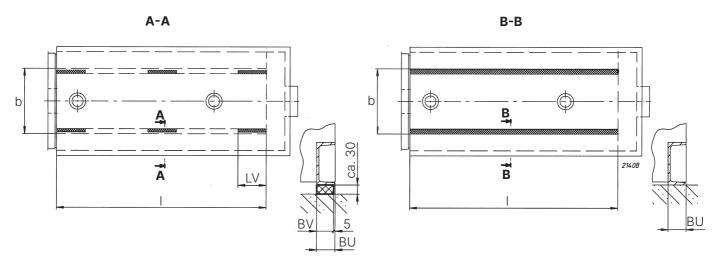
V* Cette dimension peut être réduite à 200 mm, tant que cela ne gêne pas la commande du tableau et n'empêche pas la porte d'une chambre de combustion voisine de pivoter.

LRR		Туре	53	54	55	56	57	58	59
Puissance nominale		kW	3′300	4'000	4'700	5′600	6′700	8′100	9′700
Mur - front chaudière	D	mm	3'800	4'000	4'400	4'800	5'200	5'700	6'200
Longueur bloc chaudière	Т	mm	4'350	4'590	4'990	5'409	5'859	6'401	7'002
Mur - arrière chaudière	U	mm	1′150	1'150	1'150	1'150	1'150	1'150	1'150
Mur - coté chaudière*	V	mm	1'000	1'000	1′000	1'000	1'000	1′000	1′000
Distance	d	mm	15	15	15	42	42	42	42

4.2.2 Socle chaudière

En principe, aucun socle de chaudière n'est nécessaire pour la série des Pyronox LRR.

Les socles sont opportuns dans les cas où:


- Le sol est humide, meuble ou inégal,
- la distance au sol pour le montage du brûleur es insuffisante.

4.2.3 Support chaudière

Il est possible de placer la chaudière sur des plots antivibratiles (A-A).

Vous trouverez plus d'informations au chapître 4.3.1.

avec plots antivibratiles (Vibratex)

sans plots antivibratiles (Vibratex)

LRR		Туре	53	54	55	56	57	58	59
Puissance nominale		kW	3'300	4'000	4′700	5′600	6′700	8′100	9′700
Longueur socle chaudière	I	mm	2′700	2'850	3'200	4'110	4′510	4'912	5′412
Largeur socle chaudière	b	mm	1′150	1′290	1'350	1′520	1′610	1'670	1′730
Longueur Vibratex	LV	mm	706/562	706	634	634	634	670	670
Largeur Vibratex	BV	mm	50	50	60	75	75	85	85
Largeur U-Profil	BU	mm	60	60	65	80	80	90	90
Quantité Vibratex			6/2	8	10	12	14	14	16

4.3 MESURES D'INSONORISATION

L'insonorisation de chaufferies situées à côté, sur ou sous des bureaux, des locaux d'habitation ou de repos doit être particulièrement soignée.

Afin d'éviter la transmission de bruits plusieurs types de mesures sont possibles:

- Mesures constructives
- Pièges à sons sur les ouvertures d'entrée et de sortie d'air
- Plots antivibratiles sur soubassement de chaudière
- Capot de brûleur insonorisant
- Piège à son sur conduit de fumées
- Intégration de compensateurs entre chaudière et tuyauteries

4.3.1 Plots antivibratiles sur soubassement de chaudière

Les plots antivibratiles VIBRATEX proposés par YGNIS évitent la transmission des vibrations au soubassement de la chaudière et au bâtiment. Ils sont constitués de profilés spéciaux en caoutchouc.

Vous trouverez leurs dimensions et la façon de les placer au chapitre 4.2.3.

Afin d'éviter les points de transmission il est recommandé d'intégrer des compensateurs aux raccordements des tuyauteries du chauffage et de la cheminée.

Attention! Une fois la chaudière est remplie, elle s'abaisse de 3-5 mm.

4.3.2 Capot de brûleur insonorisant

L'exploitation de générateurs de chaleur avec du fioul et/ou du gaz peut générer des bruits gênants.

Par la mise en oeuvre du capot insonorisant YGNIS le niveau sonore peut, au moins en partie, être réduit.

En cours de planification, prévoir la place supplémentaire nécessaire pour la pose et la dépose du capot.

4.3.3 Piège à sons sur conduit de fumées

Avec la mise en place d'un piège à sons entre chaudière et cheminée, la transmission des bruits de combustion au bâtiment et/ou à l'air libre, par l'intermédiaire du système d'évacuation des fumées, peut être sensiblement réduite.

Du fait que les chaudières à fioul ou à gaz sont de plus en plus souvent exploitées avec de faibles températures de fumées les pièges à sons doivent être réalisés en acier inoxydable. Pour éviter les vibrations mécaniques tenir compte des détails suivants lors de l'installation:

- Les pièges à sons ou conduits de liaison doivent être raccordés à la chaudière au moyen de manchettes flexibles.
- La suspension ou la fixation des conduites doit se faire avec des éléments amortisseurs.
- Les traversées de cloisons ou de dalles doivent être isolées.

4.4 RACCORDEMENT HYDRAULIQUE

4.4.1 Remarques générales

Pour le raccordement hydraulique de l'installation de chauffage et des chauffe-eau éventuels - en particulier pour ce qui concerne les dispositifs techniques de sécurité comme les soupapes de sécurité, les vases d'expansions, etc. - nous renvoyons aux règles techniques généralement reconnues, ainsi qu'aux normes et aux dispositions en viqueur.

4.4.2 Températures de fonctionnement

Pour éviter que le point de rosée s'abaisse sous la limite déterminée à l'intérieur de la chaudière, il faudra prévoir une limitation automatique du minimum de la température de retour de la chaudière.

Vous trouverez cela ainsi que la pression de service max. de la chaudière et la température max. d'utilisation dans chapitre 3.1 de cette documentation technique.

4.4.3 Débit volumique d'eau minimal

Aucun débit volumique d'eau minimal n'est exigé dans la chaudière.

4.4.4 Centrales de chauffe en terrasse

Si les chaudières sont installées en chaufferie terrasse ou au point le plus élevé de l'installation de chauffage, elles devront être dotées de dispositifs de sécurité complémentaires (comme les sécurités contre le manque d'eau).

Respecter la pression de service min. (voir chapitre 3.1).

Toujours respecter les dispositions de sécurité locales en vigueur.

4.4.5 Remplacement de la chaudière

Lors de l'intégration de la chaudière à une ancienne installation, nous recommandons une analyse de l'eau avec mesuration de l'oxygène.

Si la qualité de l'eau requise selon SICC ne peut pas

être garantie, des mesures appropriées doivent être prises (par exemple une séparation du système, remplissage, etc).

4.4.6 Séparation du système

Dans les chauffages à vases d'expansion ouvert ou à dispositif d'expansion trop faiblement dimensionné, dans les chauffages au sol à tubulures non étanche à la diffusion etc. il est possible que de l'oxygène pénètre dans l'eau de chauffage et provoque des dommages par corrosion.

Si impossible d'éviter cet état de chose, des mesures supplémentaires sont nécessaires (utilisation correcte d'agents anti-oxygène ou de produits chimiques).

Si une installation sans pénétration d'oxygène est impossible, une séparation au moyen d'un échangeur thermique devra être réalisée.

4.5 Installation électrique

4.5.1 Avertissement généraux

Toutes les travaux électriques de l'installation de chauffage doivent impérativement être réalisés par un électricien autorisé.

Les règles techniques ainsi que les préscriptions et normes locales doivent être respectées.

Les raccordements électriques, particulièrement le

raccordement au réseau d'alimentation, ne seront effectués que lorsque toutes les autres opérations de montage (fixation, assemblage, etc.) auront été réalisées. Les installations faites sur site (canaux pour les câbles, etc.) ne doivent pas être fixées aux panneaux de la chaudière!

4.5.2 Raccordement au réseau

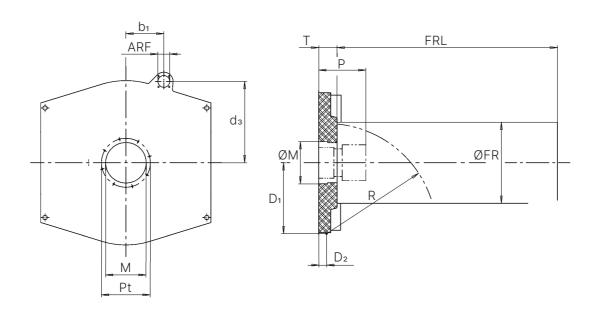
L'alimentation extérieure est du type monophasé en courant alternatif de 230 V, 50 Hz ou tripasé en courant alternatif 400 VAC, 50 Hz, les deux, max. 16 A. Le tableau de commande est protégé à l'intérieur par un fusible à action retardée de 6,3 A (brûleur/chaudière) et par un fusible additionnel à action retardée de 6,3 A pour chaque régulateur ou module supplémentaire.

Le câble de raccordement au réseau électrique ainsi que tous les raccordements externes à la régulation de la chaudière doivent être réalisés, de façon appropriée, par l'installateur électricien.

Un dispositif de débranchement conforme à la norme DIN VDE 0116 devra être prévu sur place.

L'alimentation doit correspondre aux exigences de la norme EN50 160 (tension ±10% max, fréquence ±1%).

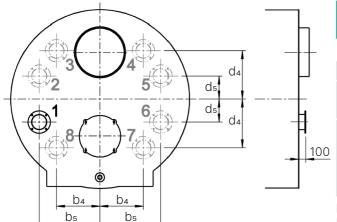
4.5.3 Raccordement du brûleur


Les raccordements électriques du brûleur (alimentation électrique et commande) sont effectués par le

client en fonction des exigences du brûleur.

4.6 RACCORDEMENT BRÛLEUR ET ARF (recyclage des gaz)

4.6.1 Dimensions de raccordement / Pivotement brûleur



LRR			Туре	53	54	55	56	57	58	59
Puissance nominale			kW	3'300	4'000	4′700	5′600	6′700	8′100	9′700
Foyer										
Longueur		FRL	mm	3′765	3'980	4'360	4'690	5'090	5'550	6′120
Diamètre		FR	mm	1′020	1′110	1′220	1′270	1′350	1′430	1′500
Raccordement brûleur										
Passage tube brûleur		М	mm	480	480	510	540	580	580	620
Longueur tube brûleur*	min.	Р	mm	290	290	290	350	370	390	390
	max.	Р	mm	590	540	540	580	580	600	600
ø Perçage trous		Pt		580	580	580	640	680	680	700
W Ferçage trous		Γί		8xN	112 -15° v	ers.	4xM16 +	20° vers.	/4xM12 -	20° vers.
Charge maximale de porte de foyer par poids brûleur **			kg x m	370	440	500	745	850	915	980
Raccordement du ventilateur pour re	ecycla	ge de	es gaz (A	RF)						
ø Passage (ARF)		ARF	mm	180	180	180	-	-	-	_
ø Perçage trous		Lk	mm	225	225	225	_	-	-	-
W Ferçage trous		LK		4xM	16 +45° v	vers.	-	-	-	-
Centre bride ARF		dз	mm	990	1′095	1′155	-	-	-	-
Centre bride ARI		b ₁	mm	505	510	510	-	-	-	-
Pivotement du brûleur										
Rayon de pivotement	max.	R	mm	1'365	1′505	1′612	1′780	1'895	1′985	2'065
Distance Axe chaudière - axe de rotation		D ₁	mm	860	960	1'015	1'150	1′225	1′275	1'320
Distance Bride porte chaudière - axe de rotation		D ₂	mm	130	130	130	172	172	172	172
Epaisseur porte chaudière		Т	mm	240	240	240	292	312	332	332

^{*}Longueur tube brûleur sans prise en compte d' une bride intermédiaire.

^{**}Charge en tant que "poids brûleur x distance entre centre de gravité brûleur et porte". Utiliser un support de brûleur si nécessaire.

4.6.2 Raccordement ARF, LRR 56 - 59

LRR Puissance nomina	le	Type kW	56 5′600	57 6′700	58 8'100	59 9'700
Raccordement ver	ntilate	ur pou	r recycla	ge des g	az (ARF))
ø Passage ARF	ARF	mm	210	210	260	260
a Dorongo troup	Lk	mm	280	280	335	335
ø Perçage trous	LK		4xM16	6, 45°	6xM1	6, 30°
	b ₄	mm	620	640	685	720
Centre bride ARF	b ₅	mm	865	925	995	995
Centre bride ARF	d ₄	mm	690	745	780	800
	d₅	mm	330	365	390	405

Position 1: Raccordement standard

Position 2-8: sur demande

4.7 SYSTÈME D'ÉVACUATION DES FUMÉES

4.7.1 Remarques générales

Les chaudières Pyronox LRR ont été conçues selon les dernières avancées de la technique.

Par une association exacte de la chaudière à la cheminée il est possible d'atteindre une exploitation optimale des combustibles et ainsi une exploitation économique. Il faut tout particulièrement tenir compte des règles de l'art, des recommandations de la police du feu et des normes en vigueur.

4.7.2 Détermination des sections

Les sections doivent être calculées pour les chaudières à foyer pressurisé.

Pour définir les dimensions, les éléments particulièrement déterminants sont le type de combustible, la puissance de l'appareil, la température et la quantité des gaz brûlés ainsi que la construction et la hauteur de la cheminée.

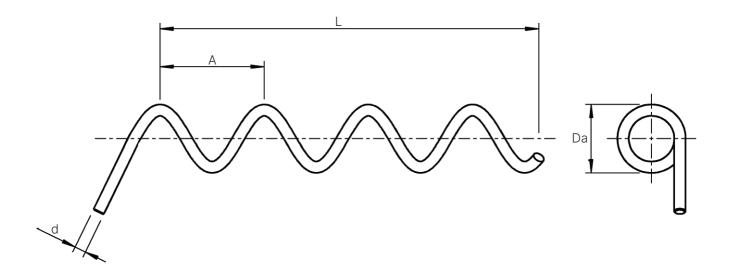
4.7.3 Conduit d'évacuation

Il est recommandé d'exécuter le tuyau de fumée en matériaux inoxydables. Le conduit de raccordement devra être posé et inséré dans la cheminée avec une pente de 30-45° de manière à favoriser le courant ascendant.

L'entrée doit être effectuée de façon que l'eau de condensation provenant de la cheminée ne puisse pas refluer vers la chaudière.

Les raccordements de plus de 1 m de longueur doivent être isolés. Les manchons de mesure doivent dépasser de l'isolation.

La cheminée doit être étanche aux gaz et aux surpressions. Elle doit, en outre, être résistante à l'humidité et aux acides.



4.8 TURBULATEURS

Grâce aux turbulateurs insérés dans les tubes de fumée, la température des gaz brûlés peut être réglée.

rieure en direction du collecteur des fumées. Tous les tubes de fumée du troisième parcours devront Observez en outre les instructions de montage. être dotés du même nombre de turbulateurs.

Il s'agit des tubes qui sont ouverts dans la partie posté-

LRR Puissance nominale		Type kW	53 3'300	54 4'000	55 4'700	56 5'600	57 6′700	58 8'100	59 9′700
Quantité turbulateurs sans ARF			54	63	72	80	84	91	99
Quantité turbulateurs avec ARF			54*	63*	72*	80**	84**	91**	99**
Diamètre externe	Da	mm	72	72	72	72	72	72	72
Diamètre fil	d	mm	10	10	10	10	10	10	10
Pas	Α	mm	80	80	80	80	80	80	80
Longueur	L	mm	3′100	3′100	3′100	3′100	3′100	3′100	3′100

^{*}ARF monté à l'externe de la chaudière

^{**}ARF monté sur place

5. MONTAGE SUR PLACE

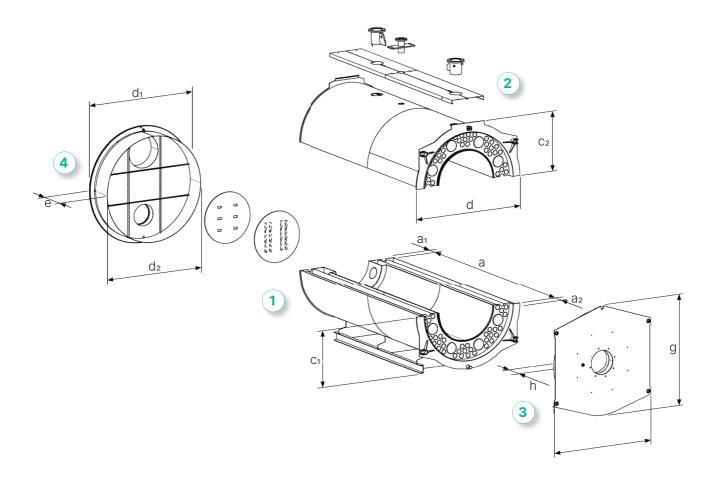
5.1 REMARQUES GÉNÉRALES

Si à cause de manque de place l'introduction est trop difficile, le transport et la livraison peuvent être effectués par éléments séparés (voir dimensions 5.2).

L' introduction du matériel dans la chaufferie doit être éffectuée par l'installateur.

Mais sur demande et contre rémunération avantageuse il est possible de faire exécuter ces travaux par YGNIS SA.

Deux aides sont à mettre à la disposition de YGNIS. L'assemblage prêt au raccordement dans la chaufferie est effectué par notre équipe spécialisée YGNIS, selon de sévères normes de qualités.


Nous offrons les mêmes garanties que pour une chaudière produite en usine.

À prévoir dans la chaufferie:

- Place disponible pour le montage et le soudage,
- Possibilité d'accrochage pour un palan à chaîne ou un chevalet adapté,
- raccordement électrique 3×400 V, 15 A (fiche J15),
- raccordement eau pour essais de pression.

5.2 DIMENSIONS

LRR	Туре	53	54	55	56	57	58	59
Puissance nominale	kW	3′300	4′000	4′700	5′600	6′700	8′100	9'700
а	mm	3'915	4′132	4′502	4'882	5′302	5′784	6'354
a 1	mm	30	30	30	30	30	30	30
a 2	mm	100	100	100	100	100	100	100
b	mm	1′970	2′170	2'280	2′560	2′710	2'810	2'900
C1	mm	1′110	1′263	1′285	1′295	1′530	1′760	1'572
C2	mm	1′005	1′105	1′160	1′485	1′375	1′351	1′623
d ₁	mm	1′960	2′160	2'270	2′550	2′700	2'800	2'890
d ₂	mm	1′750	1′950	2'060	2′300	2'450	2′550	2'640
е	mm	588	608	638	678	708	768	798
f	mm	1′820	2'020	2'130	2'430	2′580	2'680	2′770
g	mm	1′772	1′970	2'060	2'430	2′580	2'680	2′770
h	mm	240	240	240	303	323	343	343
Poids pour 6 bars								
1	kg	2'695	3'234	3'893	4'968	6'249	7'489	8'557
2	kg	2'521	2'969	3'676	5'016	5′716	6'519	8'253
3	kg	683	845	966	1′410	1′656	1′898	2'033
4	kg	245	292	322	490	548	595	635

Poids pour 4, 8 et 10 bars sur demande

6. RÉGULATIONS

6.1 THERMOSTAT DOUBLE (CT/TS) D150R

Pour la gamme de chaudières Pyronox LRR, on utilise principalement le thermostat double (STB/TW) D150R. Le thermostat double sert à protéger les installations dotées d'une régulation externe contre la surchauffe. Il dispose d'un contrôleur de température (CT) et d'un thermostat de sécurité (TS).

La livraison comprend un doigt de gant de 1/2" ainsi que une équerre de montage pour le montage du thermostat double sur une bride.

6.1.1 Données de base du thermostat double

Thermostat de sécurité	max. 110 °C
Contrôleur de température	20110°C
Inclus doigt de gant	150 mm, ½"
Inclus support de montage	Oui
Température ambiante compensée	Oui

7. CONDITIONS GÉNÉRALES DE FONCTIONNEMENT

7.1 COMBUSTIBLES

La gamme Pyronox LRR sont conçues pour fonctionner avec du fioul domestique, gaz naturel E/LL et propane.

L'utilisation d'autres combustibles tels que le biogaz n'est permise qu'avec l'autorisation expresse du fabricant.

7.2 AIR COMBURANT

L'air comburant ne doit pas présenter de hautes concentrations en poussière.

Il doit en outre être exempt d'halogènes (chlore, composés de fluor). Une présence excessive d'halogènes dans l'air comburant entraîne une corrosion importante.

La présence maximale d'halogènes autorisée dans l'air de combustion est de 5 ppm. Les composés d'halogènes se trouvent entre autres dans les aérosols, les diluants, les détergents, les dégraisseurs et les solvants. La probabilité est en outre grande qu'il y ait des émissions d'halogènes à proximité de nettoyages à sec, de salons de coiffure, de piscines, d'imprimeries et de machines à laver placées dans la même pièce.

En cas de doute, la parfaite qualité de l'air comburant doit être assurée par une aspiration d'air externe.

Veiller à ce que les pertes de charge soient minimales car elles peuvent réduire la puissance du brûleur.

7.3 QUALITÉ DE L'EAU

Il est nécessaire de tenir compte de la qualité de l'eau de remplissage et d'appoint. Une mauvaise qualité de l'eau a pour conséquence des dommages pour l'installation de chauffage par la formation de calcaire et la corrosion. Avec de l'eau convenablement traitée il est par contre possible d'améliorer la durée de vie, la sécurité de fonctionnement et la rentabilité

Composition de l'eau	Premier remplissage	Eaux d'appoint	Eau de chauffage
Dureté totale	< 5° fH	< 1° fH	< 5°fH
Valeur pH (20°C)	_	-	8,2 - 10,0
Phosphates (PO4)	-	-	< 30 mg/l
Chlorures (CI)	-	-	< 30 mg/l
Oxygène (O ₂)	-	-	< 0,1 mg/l
Conductivité électrique	< 200 µs/cm	< 100 µs/cm	< 200 µs/cm
Sulfates	-	-	< 50 mg/l
Fer dissous	_	-	< 0,50 mg/l

Nous vous renvoyons, de plus, aux directive SICC BT 102-01.

7.4 PROTECTION CONTRE LA CORROSION

Généralement, les installations effectuées correctement et exploitées conformément aux présentes instructions ne présentent pas de problèmes de corrosion, rendant ainsi inutile l'utilisation d'additifs chimiques.

Toutefois, en cas de mauvaise qualité de l'eau ou d'une infiltration d'oxygène de l'air dans le système de chauffage (vases d'expansion ouverts ou trop petits, tubes PER sans barrière anti-oxygène en cas de chauffage par le sol) un risque de dommages ne peut pas être exclu.

Si le liquide caloporteur doit faire l'objet d'un traitement ou d'une addition d'antigel, il est nécessaire d'en vérifier le bon dosage, l'efficacité, l'innocuité et surtout la compatibilité avec les différents matériaux qui composent l'installation.

Dans ce cas, il faudra prévoir des contrôles annuels de la qualité de l'eau utilisée dans l'installation de chauffage par une société spécialisée pour éviter tout préjudice éventuel.

8. MAINTENANCE

L'entretien de la chaudière et de l'installation doit être effectué régulièrement afin de maintenir le rendement élevé de l'appareil.

Suivant les conditions de fonctionnement, l'opération d'entretien sera effectuée une à deux fois par an.
YGNIS vous offre différents contrats de maintenance.

Notre service clientèle vous informe avec plaisir.

Les contrôles de la chaudière et de l'alimentation doivent être effectués conformément aux dispositions locales en vigueur par un professionnel qualifié. Avant toute intervention, couper l'alimentation électrique générale et fermer la vanne d'alimentation en combustible.

Attention:

L'appareil contient des composants en fibres synthétiques minérales siliceuses (fibres céramiques et de verre, laines d'isolation).

Pour toute intervention sur ces composants, l'opérateur doit porter une tenue vestimentaire adaptée et un masque de protection respiratoire pour éviter tout risque spécifique à ces produits.

8.1 CONTRÔLES PÉRIODIQUES ET TRAVAUX D'ENTRETIEN

- Contrôler le manomètre, la pompe de circulation étant éteinte. S'il indique un bas niveau d'eau ou de pression, remplir d'eau le système de chauffage.
- Contrôler le bon fonctionnement des vases d'expansion,
- contrôler les soupapes de sécurité et les ventilateurs du système de chauffage et de l'eau chaude,
- exécuter l'entretien du brûleur conformément aux recommandations particulières du fournisseur du brûleur,
- contrôler le niveau du mazout,
- nettoyer la chaudière et la cheminée,
- contrôles mensuels des installations de neutralisation.

8.2 NETTOYAGE DE LA CHAUDIÈRE

Le nettoyage de la chaudière doit être réalisé par un technicien qualifié. Le type de construction cylindrique de la chaudière Pyronox LRR facilite remarquablement les opérations de nettoyage.

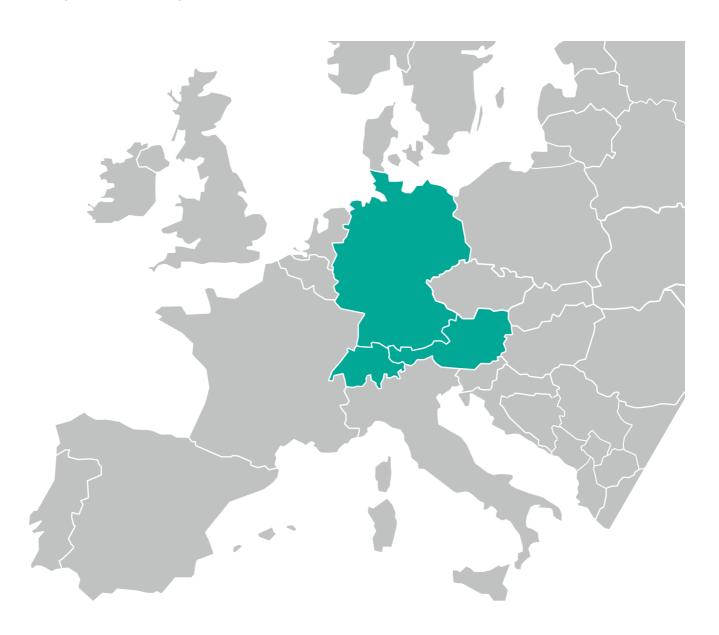
- · Couper le brûleur,
- enlever de la prise la fiche du brûleur,
- dévisser les vis de la porte de la chaudière et faire pivoter la porte avec le brûleur.

Attention!

Pour le LRR 53-59, les vis du côté de l'axe de rotation ne doivent PAS être dévissées!

Nous vous conseillons toutefois de nettoyer les surfaces de chauffe des chaudières fonctionnant avec du fioul, avec des produits chimiques adaptés. Votre ramoneur, en tant que spécialiste, vous conseillera volontiers.

- · Retirer les turbulateurs,
- nettoyer le tube de flamme et les tubes de fumée,
- démonter la trappe de nettoyage à l'arrière de la chaudière et nettoyer le collecteur des fumées,
- remonter les turbulateurs propres,
- fermer la trappe de nettoyage et fermer la porte du foyer,
- remettre en marche le brûleur.


8.3 ENTRETIEN DU BRÛLEUR

L'entretien régulier du brûleur (cellule, gicleur, tête de combustion, électrode, filtre de pompe) doit être effectué par un spécialiste selon les directives dans la notice technique du brûleur.

Après la remise en place, un contrôle de fonctionnement du brûleur doit être réalisé afin de s'assurer que les réglages n'ont pas été modifiés et qu'ils correspondent à la puissance désirée de la chaudière.

YGNIS AG SUISSE / ALLEMAGNE / AUTRICHE

YGNIS AG

HEIZKESSEL UND WASSERERWÄRMER WOLHUSERSTRASSE 31/33 6017 RUSWIL CH TEL. +41 (0) 41 496 91 20 FAX +41 (0) 41 496 91 21

E-MAIL: info@ygnis.com

ygnis.com

Service Hotline: 022 870 02 14

YGNIS SA SUCCURSALE ROMANDIE CHAUDIÈRES ET CHAUFFE-EAU CHEMIN DE LA CAROLINE 22 1213 PETIT-LANCY CH TÉL. +41 (0) 22 870 02 10 FAX +41 (0) 22 870 02 11 E-MAIL: romandie@ygnis.com

ygnis.com

