



ELEMENTI: 4

Descrizione	Dritto
Materiale	Acciaio al carbonio
Tubi - mm	70x11x1,5
Collettori - Ø	35x1,5
Connessioni	6x1/2' (attacco per la valvola di sfiato, incluso)
Fissaggi a muro	4
Pressione max d'esercizio	4 bar
Temperatura max d'esercizio	90 °C
Verniciatura	A polveri epossipoliestere
Imballo	Scatola in cartone + protezioni in polistirolo + sacchetto nylon
Dotazione di serie	1 kit di fissaggi a muro - 1 valvola di sfiato - 3 tappi ciechi

Bianco RAL9016 - dritto

Codice	Altezza mm	_		Elementi		4.5	△T50 °C Watt	△T30 °C Watt	△T42,5 °C Watt	△T60 °C Watt	Esponente n	
383852	1800	600	600	4	26,9	4,7	674	353	549	850	1,26960	

Antracite VOV12 - dritto

Codice	Altezza mm	0	Interasse N1 mm	Elementi	Peso kg	Acqua lt	△T50 °C Watt	△T30 °C Watt	△T42,5 °C Watt	△T60 °C Watt	Esponente n
383854	1800	600	600	4	26,9	4,7	674	353	549	850	1,26960

Cromo - dritto

Codice	Altezza mm	_		Elementi		1.5	△T50 °C Watt	△T30 °C Watt	∆T42,5 °C Watt	△T60 °C Watt	Esponente n
383856	1800	600	600	4	26,9	4,7	419	215	339	533	1,31404

I radiatori vengono testati presso laboratori accreditati secondo la norma EN-442 che determina la resa nominale fissando un ΔT a 50 °C.

Il ΔT è la differenza tra la temperatura media dell'acqua all'interno del radiatore e la temperatura dell'ambiente e viene calcolato con la seguente formula: $(((T_1+T_2)/2)-T_3)$. es: ((75+65/2)-20)=50 °C.

Per ottenere il valore della resa termica con un ΔT diverso, può essere utilizzata la seguente formula:

 $\phi_x = \phi_{\Delta \tau 50} * (\Delta \tau_x / 50)^n$.

Di seguito un esempio per calcolare la resa con ΔT 60 °C del codice 383852: 674*(60/50)¹²⁶⁹⁶⁰= 850.

Per ottenere il valore in kcal/h, moltiplicare la resa in watt per 0,85984.

Per ottenere il valore in btu, moltiplicare la resa in watt per 3,412.

LEGENDA

 T_1 = temperatura di mandata - T_2 = temperatura di ritorno - T_3 = temperatura ambiente.

 ϕ_x = resa da calcolare - $\phi_{\Delta\tau 50}$ = resa a $\Delta\tau$ 50 °C (tabella) - $\Delta \tau_x$ = valore di $\Delta\tau$ da calcolare

n= esponente "n" (tabella).