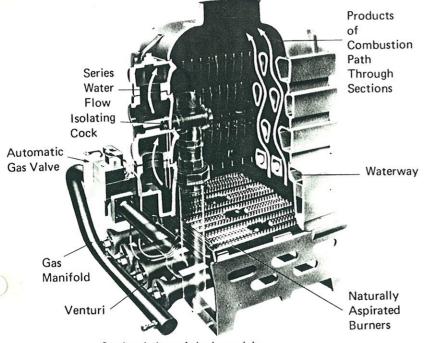
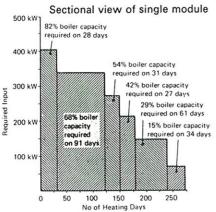


gas fired modular boiler systems

180 - 3 + WB. + 3 BB. - 7" FILE. FLOW REAR 210 - 3 + WB. + 4 BB. - 8" FILE FLOW REAR 250 - 4 + W.B. + 4 BB - 8 FLUE. FLOW FRONT... *LPG 280/300-5+W.B. + 4 BB - 8" FLUE FLOW REAR RETURN 12"UP 1600-17 320. - 5 + W.B. + 4 BB - 8" FLUE FLOW REAR RETURN 15"UP N.G. 80 FLUE FLOW REAR RETURN 15"UP


NORMAL CO: = 6.5-8.0% (STICOC 11.8%)

with outputs from 42kW to 900kW and above



Introduction

amworthy – the U.K. pioneers of modular boiler systems with over 10 years experience – provide the stem with all the advantages for user and installer.

The basic module utilises cast iron water sections which are pressed together with nipples at alternate ends. This forms the heat exchanger which employs the unique horizontal series flow water system. Each bank is pressure tested to 13.8 bar (200 p.s.i.g.) which allows a maximum working pressure of 6.9 bar (100 p.s.i.g.). The burner system employs effective but simple controls coupled with a naturally aspirated burner which is designed to give trouble free and near silent operation. By piping up any number of the basic modules to a 'reverse return'' layout a modular system is achieved which eliminates the conventional necessity to provide standby plant to cover for varying heat loads and breakdown, thereby reducir overall size of the plant and the initial capita involved.

Experience has shown that during 90% of the heating season, 60% or less of the heating capacity is required. Single unit large output boilers must cycle to meet these conditions whereas the Hamworthy modular system is designed to cope with those needs thereby increasing overall seasonal efficiency.

Typical heat load distribution in 3600 degree day area.

Imworthy modular boiler systems can therefore offer you all these advantages

Infinitely variable outputs from 42 kW upwards

Cast iron construction—max 100 psi working pressure.

Compact minimum dimensions.

Can be installed anywhere, roof-top, cellar or any convenient space.

No independent standby.

Are cheaper to run and install because the system can be varied to give you just the amount of heat you want-when you need it.

Exceptionally low noise level.

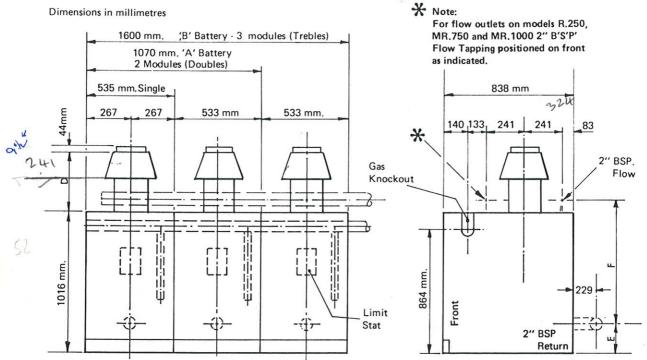
Low water content—rapid response time.

Will go through any normal doorway.

Fully packaged and factory tested.

The basic boiler design has received approval from many organisations throughout the world including:-

RELGIUM



The backing of Hamworthy's comprehensive 10 year guarantee plan on the cast iron sections.

Technical Data

Casing Details

Water Flow Data

Hamworthy modular boilers are designed as quick response low water content units, and to run continuously with minimum or no operating problems care should be taken in the initial design and layout having due regard to water flow and control aspects of the installation. General considerations are set out in the I.H.V.E. Guide and this should be consulted in conjunction with the tables shown below.

Boilers should always be installed on closed syssystems whether they are of the header tank or pressed type and as such, checks should frequently carried out and water leaks repaired to avoid the ingress of raw make-up water.

The tables given indicate the design and minimum conditions applicable to Hamworthy modular boilers. Naturally the total system should be designed on a flow rate consistent with the design temper-

minimum flow is multiplied by the number of boiler modules

ature rise across the modules of 11 °C (20°F) shown in Column A. Where combined heating and H.W.S. systems are employed the action of mixing valves or other devices can reduce the water flow through modules at certain times and in these cases steps must be taken to ensure that this flow never drops below the figure given in Column B. In hard water areas, higher minimum flow rates must be applied and these are shown in Column C.

Compliance with minimum flow rates can be achied by oversizing of the primary H.W.S. pumps couto a diverter valve, limits on the mixing valve option, or the use of a shunt pump and flow switch. Where summer use of a bank of modules for H.W.S. load only occurs, it is advisable to isolate banks of modules not required.

	Custom des	ion flour roto		Minimum flow rates at any time									
	for 11°C rise	ign flow rate across boilers	Gen	eral	Hard water areas (where total hardness exceeds 100 ppm) Column C								
	Colur	nn A	Colur	nn B									
	I/min	g/min	I/min	g/min	I/mjn	g/min							
R180	54.6	12.0	13.65	3.0,	27.3	6.0							
R210	63.7	14.0	15.9	3.5	31.85	7.0							
R250	75.5	16.6	18.9	4.2	37.75	8.3							
R280	84.6	18.6	21:2	4.7	42.3	9.3							
R300	91.0	20.0	22.75	5.0	45∙5	10.0							
R320	100.0	21.3	25.0	5.3	50.0	10.6							

76% Specifications

Natural Gas

Single Units

	Model	No. Boiler	Single	Out	tput Btu/h	Input (Nat	Gas ural)	D	FI	ue Heigh	it "D"	Wat	er Conn	ections	F	Appro Shippi	
	Barbara Barbara	Modules	Boilers	Kw	x 1,000	m³/h	ft ³ /h	mm	in	mm	in	mm	in	mm	in	kg	lb
	NGR.180	W 1	-	42	144	5,09	180	178	7	457	18 *	305	12	940	37	222	490
	NGR.210	1	_	50	168	5,94	210	203	8	508	20	305	12	940	37	227	500
-	NGR.250	1	-	60	200 ⅓	7,07	250	203	8	610	247	305	12	940	37	255	560
	NGR.280	1	- 1	65	224	7.92	280	203	8	686	27	305	12.7	940	37	282	620
L	NGR.320	1	-	75	256	9,05	320	203	8	686	27	381	15	863	34	286	630

Multi Units

	No.	Number of		utput	Input Gas			F	ue		\ \ \	Vater Co	nnection	s		rox.
Model	Boiler	Batteries	Kw	Btu/h	211	6.375			Heigh		- E		F		1 2	ing Wt. Ib
NGMR.360	Modules	A B		x1,000	m³/h	ft ³ /h	mm	in	mm	in	mm	in	mm	in	kg	
 (1) (1) (2) (3) (3) (3) (4) (4) (4) 	2	1 -	84	288	10,18	360	178	7	457	18	305	12	940	37	435	960
NGMR.420	2	1 -	100	336	11,88	420	203	8	508	20	305	12	940	37	450	990
NGMR.500	2	1 -	120	400	14,15	500	203	8	610	24	305	12	940	37	504	1,110
NGMR.560	2	1 -	130	448	15,83	560	203	8	686	27	305	12	940	37	555	1,220
NGMR.640	2	1 -	150	512	18,12	640	203	8	686	27	381	15	863	34	562	1,236
NGMR.750	3	- 1	180	600	21,23	750	203	8	610	24	305	12	940	37	753	1,660
'R.840	3	- 1	195	672	23,78	840	203	8	686	27	305	12	940	37	830	1,830
R.960	3	- 1	225	768	27,18	960	203	8	686	27	381	15	863	34	840	1,852
N .IR.1000	4	2 -	240	800	28,31	1000	203	8	610	24	305	12	940	37	1,006	2,220
NGMR.1120	4	2 -	260	896	31,71	1120	203	8	686	27	305	12	940	37	1,108	2,440
NGMR.1280	4	2 -	300	1 024	36,24	1280	203	8	686	27	381	15	863	34	1,124	2,472
NGMR.1400	5	1 1	325	1,120	39,64	1400	203	8	686	27	305	12	940	37	1,384	3,050
NGMR.1600	5	1 1	375	1,280	45,30	1600	203	8	686	27	381	15	863	34	1,402	3,088
NGMR.1920	6	- 2	450	1,536	54,36	1920	203	8	686	27	381	15	863	34	1,680	3,704
NGMR.2240	7	2 1	525	1,792	63,43	2240	203	8	686	27	381	15	863	34	1,964	4,324
NGMR.2560	8	1 2	600					-		27	381	15	863	34		
ことを はまればん かんかいき	of the			2,048	72,49	2560	203	8	686						2,242	4,940
NGMR.2880	9	- 3	675	2;304	81,55	2880	203	8	686	27	381	15	863	34	2,520	5,556
NGMR.3200	10	2 2	750	2,560	90,61	3200	203	8	686	27	381	15	863	34	2,764	6,176
NGMR.3520	11	1 3	825	2,816	99,67	3520	203	8	686	27	381	15	863	34	3,082	6,792
NGMR.3840	12	- 4	900	3,072	108,73	3840	203	8	686	27	381	15	863	34	3,360	7,408

Town gas and LPG

Single Units (Multi-units available on request)

		No. Output		Input			lue		Water Connections				Approx.				
	Model	Boiler	Single	.,	Btu/h	(Tow				Height		E		F		Shipp	ing Wt.
		Modules	Boilers	Kw	x1,000	m³/h	ft ³ /h	mm	in	mm	in	mm	in	mm	in	kg	Ib
	R.180	1	-	42	144	10,18	360	178	7	457	18	305	12	940	37	222	490
	R.210	1		50	168	11,88	420	203	8	508	20	305	12	940	37	227	500
	150	1	-	60	200	14,15	500	203	8	610	24	305	12	940	37	255	560
-	00	(<u>1</u>	-	70	240	16,99	600	203	8	686	27	305	12	940	37	282	620

Summary of technical data

Information tabulated per module

	Module Size	Wat Cont		Pressu	erway ure Drop F. Diff.	No. of Section including Bottom	Conn N.G	ofGas BSP. T.G.	N.C			re at Burr .G.		.P.G.	Waste G NTP. ap (boiler	prox.	Current Rating 240 V. 50 Ω 1-PH.
	The second second	G	L	ft	m	Waterway	L.P.G.		in	mm	in	mm	in	mm	ft ³	m ³	е
1	R.180	4.38	19	0.4	0.12	4	1"	1"	4.6	115	1.8	45	11	275	2500	70	1
1	R.210	4.38	19	0.5	0.15	4	1"	1"	4.6	115	2.2	55	11	275	2800	80	1
1	R.250	5.2	23	0.9	0.27	5	1"	11"	4.6	115	1.8	45	11	275	3300	94	1
1	R.280	6.04	27	1.4	0.43	6	1"		6.0	150					3700	104	1
1	R.300	6.04	27	1.6	0.5	6		11,"			1.8	45	11	275	4000	114	1
	R.320	6.04	27	1.8	0.55	6	1"		6.0	150					4100	118	1

Boiler efficiency

This can be calculated by the British or Continental method using gross or nett calorific value respectively. For the Hamworthy range of boilers above the following figures are applicable (NGR.320 shown as example).

METHOD.

METHOD

efficiency =

Output × 100 Gross input

256,000×100 320×1035

77.3%

CONTINENTAL

efficiency =

Output × 100 Nett input

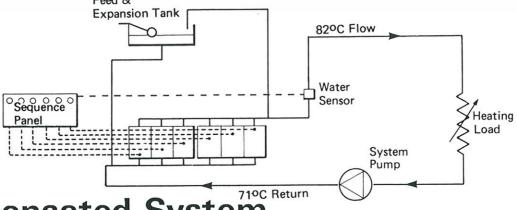
256,000×100 320×920

86.95%

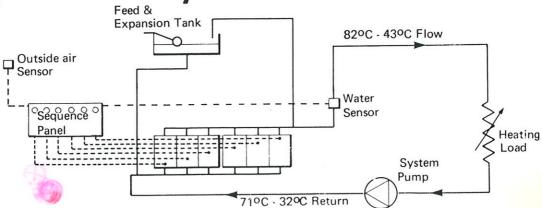
Installation Guide

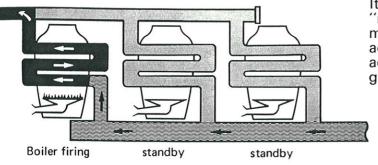

really tremendous scope on layouts all of which cannot be shown in this brochure, however, some basic schemes are outlined. All systems however designed should be in accordance with I.H.V.E. practice.

In order to gain the maximum advantage from a modular system it is recommended that a sequence panel be used where four or more boiler modules are installed. Hamworthy can provide this panel in an electronic solid state form in sizes of 4, 6, 8, 10 and 12 steps.

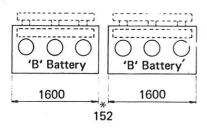

The panel can be utilised for constant flow temperature systems or alternatively for compensated systems with the addition of an outside air detector.

Other features can be employed to advantage with sequence panel such as optimisation and night back.

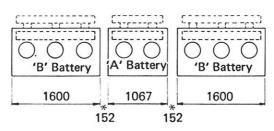

The layouts shown below are for general guidance and include a sequence control panel where necessary.



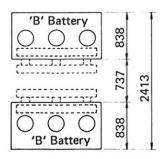
Compensated System



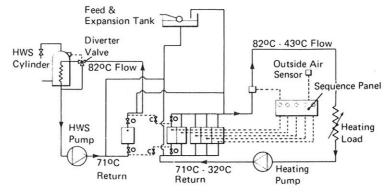
Prizontal series flow water system



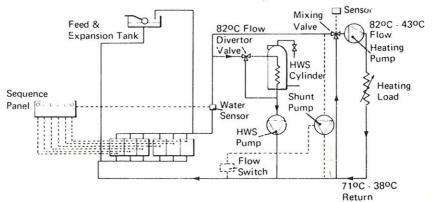
It will be seen that the system layouts employ the "reverse return" method of water connection which must always be used to ensure even water flow across the modules. In this way the pressure loss across any size bank of boiler modules is never greater than 1.9 ft head plus local pipework losses.


Typical battery groupings

2 'B' Batteries Side by Side

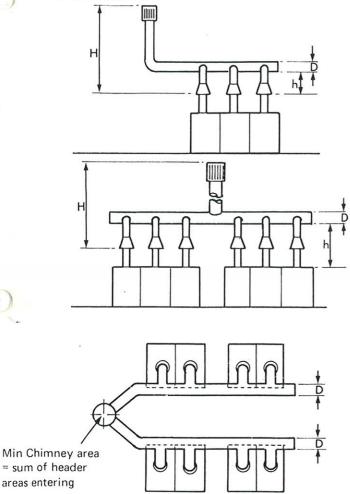


2 'B' Batteries & 1 'A' Battery Side by Side



2 'B' Batteries Back to Back

Heating and HWS Split System



Heating and HWS Joint System

ue Header Sizing Data

- For any atmospheric fired modular boiler system certain factors must be taken into account to ensure the correct removal of flue gases and the notes below are designed to compliment the table which gives header sizes applicable to the Hamworthy range.
- The tabulated diameters are standard for the typical arrangements shown.
- Any flue layout should be designed to achieve a suction of 0.125 mbar at all times at the draught diverter outlets on all modules in the bank.
- Where more than 8 modules are employed it is recommended that two headers be used.
- The chimney off-take can be taken from the centre or end of the header but centre connecon is preferred where possible.

Fan Dilution Systems

An alternative method of flue gas removal which can be employed where conditions permit is fan dilution. Basically the flue gas from the boilers is setted with fresh air to reduce the CO₂ concenton to less than 1%.

- The header should be positioned as high as possible in the boilerhouse but dimension h, should not be less than 500 mm.
- In design of flue systems due reference must always be made to Local Authorities byelaws and regulations governing chimney heights and termination points.
- Where boilers are sequentially controlled in a line arrangement it is preferable for optimum draught conditions to step boilers commencing with the boiler nearest to the chimney.
- Where the layouts shown, or header sizes indicated cannot be accommodated due to site conditions, alternative arrangements and methods of flue gas removal can be utilised and reference should be made to Hamworthy Technical Department.

						1
Re	commende	d Header	Diameter	rs (D) mi	m	
Model	Height of d	chimney a	bove dra	ught dive	rter(H)m	
Size	2m	3m	6m	10m	20m	
180	178	178	178	178	178	
210	203	203	203	203	203	
250	203	203	203	203	203	
280	203	203	203	203	203	
320	203	203	203	203	203	l
360	279	254	203	203	203	l
420	305	279	229	213	203	1
500	330	305	254	229	203	ĺ
560	356	315	279	254	229	١
640	381	330	289	264	254	
750	406	356	305	279	264	l
840	432	381	330	305	279	
960	457	406	346	320	295	
1000.	467	416	356	330	305	
1120	483	432	366	340	315	
1280	508	457	381	356	330	
1400	533	483	406	381	340	
1600	584	508	432	406	381 '	1
1920	610	559	457	432	406	
2240	660	584	508	457	432	
2560	711	610	533	508	457	

This mixture can then be discharged at low level. Further details are available from our Sales or Technical Departments.