Hamworthy Trigon

DeltaSol M Solar Controller

Installation, Commissioning & Operating Instructions

IMPORTANT NOTE

THESE INSTRUCTIONS MUST BE READ AND UNDERSTOOD BEFORE INSTALLING, COMMISSIONING, OPERATING OR SERVICING EQUIPMENT

Heating at work.

Customer After Sales Services

Telephone: 01202 662555 E-mail: service@hamworthy-heating.com Fax: 01202 662522

Technical Enquiries

To supplement the detailed technical brochures, technical advice on the application and use of products in the Hamworthy Heating range is available from our technical team in Poole and our accredited agents.

Site Assembly

Hamworthy offer a service of site assembly for many of our products where plant room access is restricted. Using our trained staff we offer a higher quality of build and assurance of a boiler built and tested by the manufacturer.

Commissioning

Commissioning of equipment by our own engineers, accredited agents or specialist sub-contractors will ensure the equipment is operating safely and efficiently.

Service Contracts

Regular routine servicing of equipment by Hamworthy service engineers inspects the safety and integrity of the plant, reducing the risk of failure and improving performance and efficiency. Service contracts enable you to plan and budget more efficiently.

Breakdown service, repair, replacement

Hamworthy provide a rapid response breakdown, repair or replacement service through head office at Poole and accredited agents throughout the UK.

Spare Parts

We offer a comprehensive range of spare parts, providing replacement parts for both current and discontinued products. Delivery options are available to suit you. Please refer to our website for more details.

Hamworthy Trigon

DeltaSol M Solar Controller

Installation, Commissioning & Operating Instructions

NOTE: THESE INSTRUCTIONS MUST BE READ AND UNDERSTOOD BEFORE INSTALLING, COMMISSIONING, OPERATING OR SERVICING THIS EQUIPMENT.

THE TRIGON DELTASOL M SOLAR CONTROLLER COMPLIES WITH ALL RELEVANT EUROPEAN DIRECTIVES.

PUBLICATION NO. 500001290 ISSUE 'A' JUNE 2013

Hamworthy Trigon

Advanced DeltaSol[®] M Controller

Mounting

Connection

Commissioning

Troubleshooting

Thank you for buying this product. Please read this manual carefully to get the best performance from this unit.

Table of contents

Safety	advice
Techni	ical data and overview of functions
1.	Installation4
1.1	Mounting 4
1.2	Electrical connection5
1.2.1	Overview of connections 5
1.2.2	Sensors5
1.2.3	Actuators
1.2.4	Bus7
1.2.5	Mains connection7
2.	Operation and function9
2.1	Buttons for adjustment9
2.2	Control lamp9
2.3	Menu structure 10
2.4	User code 10
2.5	Menu overview11

3.	Commissioning 12
3.1	Commissioning the controller 12
3.2	Basic systems and hydraulic variants 12
3.3	Function blocks14
3.4	Adjusting the controller step-by-step
3.5	Overview of sensor and relay allocation
4.	Functions and options 19
4.1	Menu: Solar 19
4.2	Menu: Arrangement 26
4.2.1	Heating circuits
4.3	Menu: Heat quantity measurement
4.4	Menu: Expert 34
4.4	Menu: Manual operation35
5.	Accessory 35
6.	Troubleshooting
Impo	rtant notice

Safety advice

Please pay attention to the following safety advice in order to avoid danger and damage to people and property.

This product is to be used in accordance with its intended use only (see page 3).

Please pay attention to the valid local regulations!

Instructions

Attention should be paid to

- the statutory provisions for prevention of industrial accidents,
- the statutory provisions for environmental protection,
- the Health and Safety at Work Act 1974
- Part P of the Building Regulations 2005
- BS7671 Requirements for electrical installations and relevant safety regulations of DIN, EN, DVGW, TRGI, TRF and VDE.

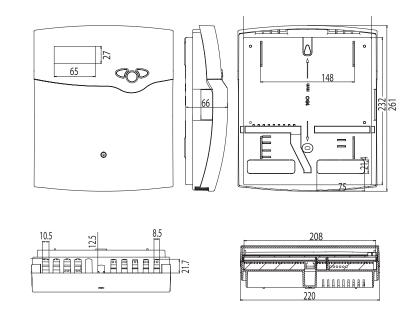
These instructions are exclusively addressed to authorised skilled personnel.

- Only qualified electricians should carry out electrical works.
- Initial installation must be effected by qualified personnel named by the manufacturer

Errors and technical changes excepted.

Declaration of conformity

The product complies with the relevant directives and is therefore labelled with the CE mark. The Declaration of Conformity is available upon request, please contact the manufacturer.


CE

Contents of accessory bag:

- dowels and screws for wall-mounting 2 x
- 1 x spare fuse T6,3A
- 11x strain relief and screw
- capacitor 4,7 nF for parallel connection when the load 3 x is smaller than 20 W
- 2 x sensor FKP6 2,5 m

Overview

- text display with menu navigation
- 15 sensor inputs
- 9 relay outputs
- 7 basic solar systems
- add-on options and functions
- function blocks can be allocated as temperature differential functions and thermostat functions
- VBus® and RS232-interface
- parametrisation and control of the system via the Service Center Software

The controller DeltaSol[®] M is preprogrammed for 7 larger basic systems and allows the control of more complex solar systems. The controller is equipped with a multi-lingual menu, 9 relay outputs and 15 sensor inputs as well as a multitude of add-on functions and options, which enable the adaptation of the controller to individual solar- and heating-systems. Additionally, the controller offers up to two integrated calorimeters and allows the control of a weather-compensated heating circuit. The $DeltaSol^{\otimes}$ M is equipped with an interface for communication with the Service Center Software. The software allows a comfortable configuration, control and evaluation of the controller and the solar systems.

Technical data:

Housing: plastic, PC-ABS and PMMA

Protection type:

IP 20 / DIN 40 050

Ambient temp.: 0...40 °C

Dimensions: 260 x 216 x 64 mm

Installation: wall mounting, also suitable for mounting into patch panels

Display: 4-line LC-text display (illuminated), menu navigation (multilingual), bicoloured LED

Operation: 3 push buttons at the front of the housing

Functions: Solar system controller for use in solar and heating systems. Two integrated calorimeters and control of a wheather-compensated heating circuit. Adjustable system parameters and additional options (menu-driven), balancing and diagnostic functions

Sensor inputs: 15 sensor inputs for Pt1000, RTA11-M,V40 and CS10

Relay outputs: 9 relay outputs, 4 of standards relays, 4 semi-conductor relays, and 1 potential-free (floating) relay.

Bus: VBus®, RS232

Power supply: 210...240V~, 50...60 Hz

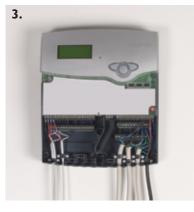
Switching capacity: 1 A (semiconductor relay)

4 A electromechanical and potential-free relay

6,3 A (sum of all relays) 220 ... 240 V Degree of pollution: 2 Rated impulse voltage: 2,5 kV Mode of operation: type 1.c

CE

Attention: Electrostatic discharge can cause damage of electronic components


Warning: high-voltage components

1. Installation

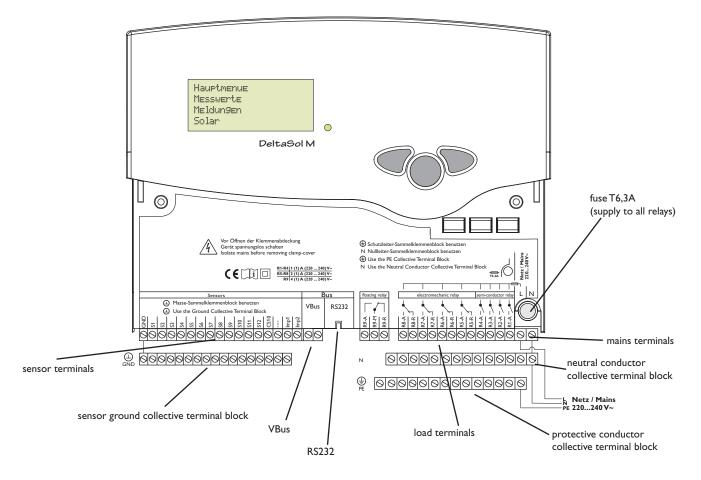
1.1 Mounting

WARNING! Always disconnect the controller from power supply before opening the housing!

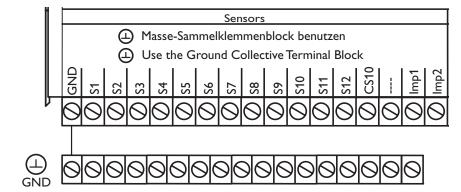
The unit must only be located in dry interior locations. It is not suitable for installation in hazardous locations and should not be placed close to any electromagnetic fields.

The controller must additionally be supplied from a double pole switch with contact gap of at least 3 mm. Please pay attention to separate routing of sensor cables and mains cables.

- 1. Unscrew the cross-head screw from the cover and remove it along with the cover from the housing. Afterwards, unscrew cross-head screws from the terminal cover and remove the terminal cover.
- 2. Mark the upper fastening point on the wall and drill and fasten the enclosed wall plug and screw leaving the head protruding.
- 3. Hang the housing from the upper fastening point and mark the lower fastening point through the hole in the terminal box (centres 160 mm). Drill and insert the lower wall plug and insert the lower fastening screw and tighten.
- 4. Connect relay, sensor and mains cables in accordance with the terminal allocation and secure with strain relief.
- 5. Insert terminal cover and housing cover and attach with the cross-head screws.


Advice:

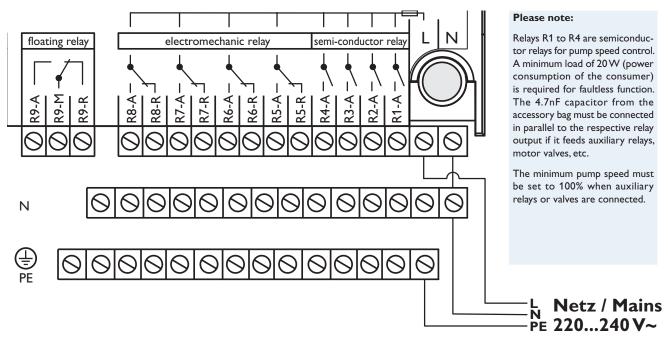
Cable trunkting (e.g. 60 x 110 mm²) should be mountted directly below the controller in order to facilitate the connection and separation of mains and sensor cables.The cables must be inserted into the terminal block with the stripped cable ends ensuring no stray wires.



1.2 Electrical connection

1.2.1 Overview of electrical connections

The controller is equipped with 15 sensor inputs in total. The ground connection for the sensors has to be carried out via the ground terminal block (GND).


- **Temperature sensors** have to be connected to the terminals S1 ... S12 and GND (either polarity).
- The irradiation sensor (CS10) is to be connected to the terminals CS10 and GND with correct polarity. Connect the terminal GND of the sensor to the terminal

GND of the controller (ground terminal block), and the terminal CS of the sensor to the terminal CS10 of the controller.

• Two **flowmeters** V40 can be connected to the terminals Imp1... Imp2 and GND (either polarity).

1.2.3 Actuators

The controller is equipped with 9 relays in total to which **loads** (actuators) such as pumps, valves, mixers and auxiliary relays can be connected (A = normally open contact; R = normally closed / break contact):

• Relays R1 ... R4 are semiconductor relays, designed for pump speed control.

R1-A F	R4-A =	normally open R1 R4
Ν	=	neutral conductor N
		(common terminal block)
PE	=	protective earth conductor PE
		(common terminal block)

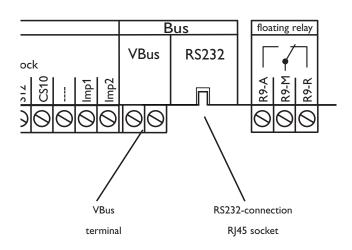
• Relays R5 ... R8 are electromechanical

relays with change-over contact.

relays when er		contact.
R5-A R8-A	=	normally open R5R8
R5-R R8-R	=	normally closed R5 R8
Ν	=	neutral conductor N
		(common terminal block)
PE	=	protective earth conductor PE
		(common terminal block)

• Relay R9 is a floating / potential-free relay with changeover contact: R9-M = center contact R9

K9-I*I	=	center contact K9
R9-A	=	normally open R9
R9-R	=	normally closed R9



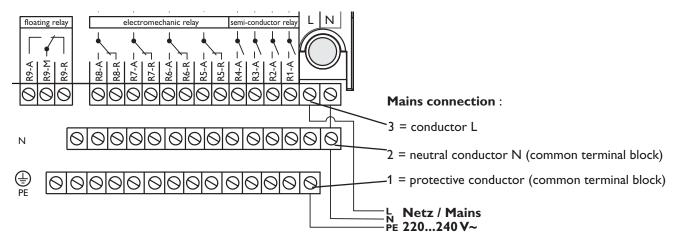
Note:

If a heating circuit pump is controlled via the internal heating circuit with relay 9, an insulated jumper has to be run from the mains input L to R9-M!

6

1.2.4 Bus

The controller is equipped with two bus interfaces for data communication:

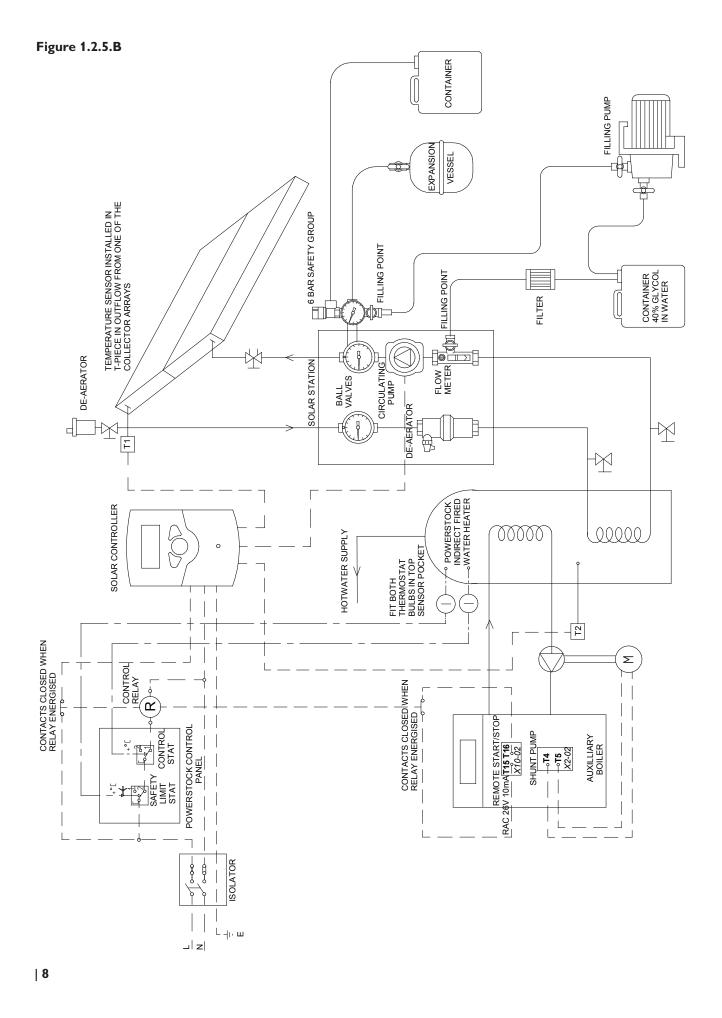

 The VBus[®] for data transfer with and energy supply to external modules. The connection is carried out at the two terminals marked "VBus[®]" (any polarity). One or more VBus[®] modules can be connected via this data bus:

• WMZ calorimeter

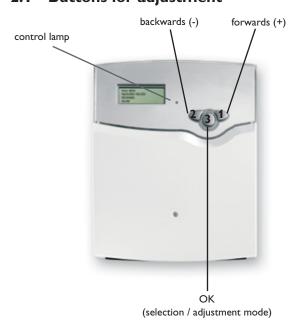
2.) The **RS232-interface** for direct connection to a PC. Measured values and parameters of the controller can be read out, adjusted, processed and visualised by means of the evaluation tool RSC (ServiceCenter Software). The software allows easier paramatrisation and function control of the system.

1.2.5 Mains supply

Figure 1.2.5.A


The power supply to the controller must be carried out via an external power switch (last step!) and the supply voltage must be 220 ... 240 V~ (50 ... 60 Hz). Flexible cables must be attached to the housing with the enclosed strain relief and the

The mains electrical supply to the controller must be wired through an electrical contactor interlocked to any hot water cylinder limit stat. See figure 1.2.5.B corresponding screws or be run into the controller housing in a cable conduit or trunking (see advice on page 4).


7 |

Advanced DeltaSol® M Controller

2. **Operation and function** 2.1 **Buttons for adjustment**

The controller is operated via the 3 push buttons next to the display. The forward-button (1) is used for scrolling forward through the menu or to increase the adjustment values. The backward-button (2) is similarly used for scrolling backwards and reducing values. Button 3 is used for selection of the menu lines and for confirmation.

- Briefly press button 3 in order to get to the main menu
- Select the requested menu using buttons 1 and 2.
- Briefly press button 3, the selected submenu is then • shown on the display. By selecting the menu line "back", the display returns to the former menu level.
- Press buttons 1, 2 and 3 to scroll until the choosen menu line is reached.
- Briefly press button 3 in the respective menu line to modify adjustment values - "change value" appears on the display - adjust the requested value by pressing the buttons 1 and 2 (for large intervals, keep the button pressed).
- Briefly press button 3 in order to finish the adjustment.
- To save the change, answer the security inquiry "Save?" by choosing "yes" or "no" (buttons 1 and 2) and confirm with button 3.
- Note:

If in the display mode no button is pressed within 4 minutes, the display changes back to measured values menu (in the case of a message, the message menu is indicated).

If nothing is entered and no security inquiry answered within 7 seconds, the controller automatically changes to the repective menu.

When button 3 is pressed for 2 seconds, the display changes back to the main menu.

2.2 Control lamp

The controller is equipped with a red-/green control lamp. The following control and system status are signalled:

- green
 - automatic operation red flashing:
 - malfunction of the system
 - green flashing manual mode

2.3 Menu structure

	MRIN	MENU	
--	------	------	--

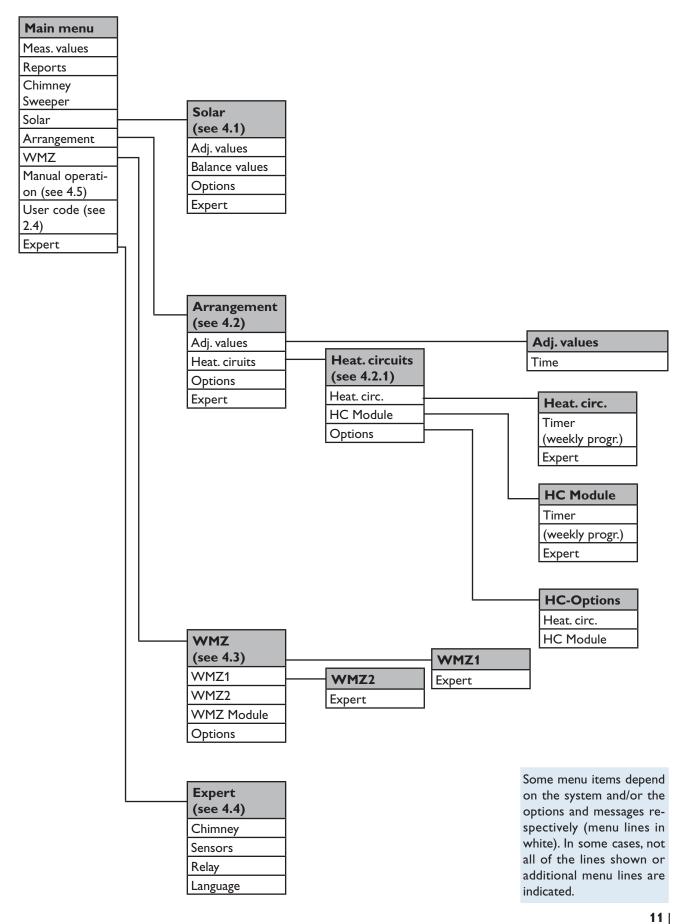
- 1. MERS. VALUES
- 2. *REPORTS*
- 3. SOLAR
- 4. **RRRRNGEMENT**
- 5. *UNZ*
- 6. MRNURL OPERATION
- 7. USER CODE
- 8. EXPERT

The clear-text display shows a 4-line part of the selected menu.

Adjustment and control of the controller are carried out via the menu. When the controller is commissioned, the display level is in the main menu. In the first line of each submenu you will find the option "back", by means of which it is possible to get to the former menu level. In the following diagrams you will find the complete menu contents; since some of the menu points depend on the system, option or message, in some cases not all of the shown text lines are indicated.

MAIN MENU is shown on the display in the initial state. A selection can be made between 8 submenus.

Note: The choice of adjustment values and options depends on different functions and the user code. Some only appear in the display if they are available for the adjusted system parameters.


2.4 User code

1. Expert	Code 262 (factory setting)
	All menus and adjustment values are shown
	and all values can be altered.
2. User	Code 077
	The expert level is shown, parameter access
	is restricted.
3. Customer	Code 000
	The expert level is not shown, adjustment
	values (solar) can be changed partly; modi-
	fication of options, parameter and balance
	values is not possible.
	For safety reasons, the user code should ge-
	nerally be set to "000" before the controller
	is handed to the customer!

Note:

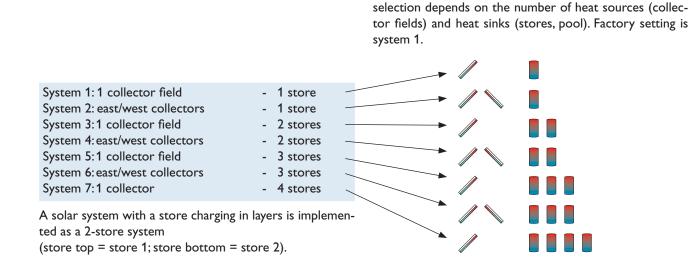
After the menu point "user code" has been choosen, enter the user code!

2.5 Menu overview

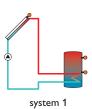
3. Commissioning

3.1 Commissioning the controller

The controller is partially freely programmable. For special applications, the relays and the corresponding sensors are assigned in steps.


7 basic systems with different hydraulic variants each are pre-programmed.

- 1. Adjust the basic system; sensors and relays will be allocated automatically (see 3.2 and 4.1).
- 2. Activate further options (bypass, external heat exchanger etc. see 4.1 and 4.2.)
- 3. Select free function blocks for further applications (return preheating, use of further heat sources; see 3.3 and 4.2.)
- 4. Finally, after every step, carry out special adjustments (switching conditions and limits; see 4.1 and 4.2).
- 5. Up to 2 heat quantity measurement functions (see 4.3) and other functions such as reports or chimney sweeper can be activated.


The controller can be adjusted in steps (see 3.4.) All functions, options and menu items are described in detail in chapter 4.

The controller is preprogrammed for 7 basic systems. The

3.2 Basic systems and hydraulic variants

Beginning with system 2, different hydraulic variants are possible (pump or valve control):

system 2 variant 1

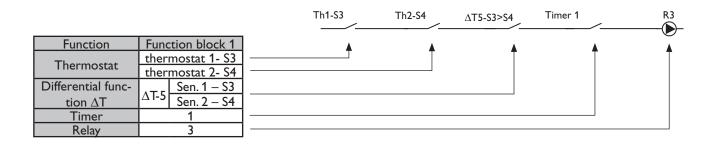
For each variant, the controller allocates the corresponding relays and sensors. The allocations of the most important combinations are shown in 3.5.

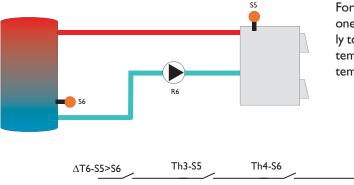
The system and the variant have to be selected first (*SOLRR/ OPTIONS/*...)!

Important note:

If you select a new system, any previous adjustments which have been done will be set back to the factory settings (reset)!

3.3 Function blocks


Depending on the selected combination system/variant other options e.g. internal heating circuit module, certain relays are already assigned. Relays which are not assigned can be allocated to one of the 5 function blocks other uses e.g.(extra valves, stores, heat sources etc). Each function block provides 4 functions:

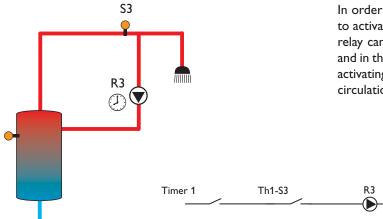

- 1 temperature differential function
- 2 thermostat function
- 1 timer (with 3 time frames)

Function	Function block 1		Funct	tion block 2	Funct	tion block 3	Funct	ion block 4	Function block 5	
Thermostat	thermostat 1- S3		thermostat 3- S5		thermostat 5- S7		thermostat 7- S9		thermostat 9- S11	
Thermostat	thermostat	: 2- S4	thermostat 4- S6		thermostat 6- S8		thermostat 8- S10		thermostat 10- S12	
Differential func-	sen. 1	1 – S3		sen. 1 – S5		sen. 1 – S7		sen. 1 – S9		sen. 1 – S11
tion ΔT	ΔT-5 sen. 2	2 – S4	∆ T-6	sen. 2 – S6	∆T-7	sen. 2 – S8	∆ T-8	sen. 2 – S10	∆ T-9	sen. 2 – S12
Timer	Timer 1		2		3		4			5
Relay 3			6		7		8		9	

Within a function block, these functions can be activated and combined as required in the menu (*RRRANGEMENT/OPTIONS/...*). All switch-on conditions of all activated functions have to be fulfilled in order to energise the relay allocated to the func-

tion block (*RRRRNGEMENT/RDJ. VRLUES/...*). These functions can be compared to switches connected in series:

For the use of a further heat source (e.g. solid fuel boiler), one or two thermostat functions can be activated additionally to the differential function, in order to allocate a minimum temperature to the boiler or to limit the maximum store temperature.


ARRANGEMENT/OPTIONS/ Δ *T-FUNC6*..........change setting to "Yes" *ARRANGEMENT/OPTIONS/THERMO.3*.....change setting to "Yes" *ARRANGEMENT/ADJ. VALUES/T-TH3 ON*.....change value to "60" *ARRANGEMENT/ADJ. VALUES/T-TH3 OFF*....change value to "55" *ARRANGEMENT/OPTIONS/THERMO.4*......change setting to "Yes" *ARRANGEMENT/ADJ. VALUES/T-TH4 ON*.....change value to "58" *ARRANGEMENT/ADJ. VALUES/T-TH4 OFF*...change value to "60"

minimum temperature limitation for the boiler

R6

✐

maximum temperature limitation for the store

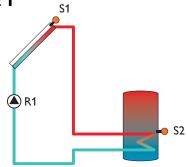
In order to control a circulation pump, it might be enough to activate the timer. With the aid of the 3 time frames, the relay can be switched individually in the morning, at noon and in the evening. This process can be further optimised by activating a thermostat function so that - with a sensor in the circulation line- control is also temperature-dependent.

RRRANGEMENT/OPTIONS/TIMER 1	change setting to "Yes"
ARRANGEMENT/ADJ. VALUES/TIMER 1/T1 ON	change value to "06:00"
RRRANGEMENT/RDJ. VALUES/TIMER 1/T1 OFF	change value to"08:00"
RRRANGEMENT/RDJ. VALUES/TIMER 1/T2 ON	change value to"11:30"
RRRANGEMENT/RDJ. VALUES/TIMER 1/T2 OFF	change value to "13:30"
RRRANGEMENT/RDJ. VALUES/TIMER 1/T3 ON	change value to "18:00"
RRRANGEMENT/RDJ. VALUES/TIMER 1/T3 OFF	change value to "21:00"
RRRANGEMENT/OPTIONS/THERMO. 1	change setting to "Yes"
ARRANGEMENT/ADJ. VALUES/T-THI ON	change value to"50"
RARRANGEMENT/RDJ. VALUES/T-TH1 OFF	change value to "55"

3.4 Adjusting the controller step-by-step

Before adjusting the controller, select the language (EXPERT/LRNGURGE/...). Points 1. – 3. have to be adjusted for all systems, points 4. – 18. aree adjusted optional to suit the system requirements, points 19. and 20. should be adjusted before the system is handed over to the operator.

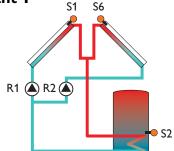
1. Select basic solar system 9. Activate further functions without relay allocation (if (SOLAR/OPTIONS/SYSTEM) needed): Tube collector function 2. Select hydraulic variant (beginning with system 2) (SOLAR/OPTIONS/TUBE COL.) (SOLAR/OPTIONS/LOADING) Collector cooling function 3. Adjust date and time (SOLAR/OPTIONS/COL. COOLING) (RRRRINGEMENT/RDJ. VALUES/TIME) Recooling function 4. Activate internal heating circuit module if needed (SOLAR/OPTIONS/RECOOLING) (RRRRINGEMENT/HERT. CIRCUITS/OPTIONS/HERT. CIRC.) Frost protection 5. Adjust parameters for internal heating circuit module (SOLAR/OPTIONS/FROST. PROT.) (RRRANGEMENT/HEAT. CIRCUITS/HEAT. CIRC./...) Target temperature 6. Activate external heating circuit module if needed (SOLAR/OPTIONS/TARGET TEM.) (RRRRNGEMENT/HERT. CIRCUITS/OPTIONS/HC MODULE) CS-Bypass 7. Adjust parameters for external heating circuit module (SOLAR/OPTIONS/CS-BYPASS) (RRRANGEMENT/HERT. CIRCUITS/HC MODULE/...) 10.Adjust special parameters of the selected options 8. Activate desired functions with relay allocation (if needed) (SOLRR/RDJ. VRLUES/...), Bydass (SOLAR/EXPERT/...) and (SOLAR/OPTIONS/BYPRSS) (ARRANGEMENT/ADJ. VALUES/...) 11.Activate functions of function blocks (if needed) External heat exchanger (RRRRNGEMENT/OPTIONS/...) (SOLAR/OPTIONS/EXT. HEAT. EX) 12.Adjust switching conditions for the activated functions Cooling function (RRRANGEMENT/RDJ. VALUES/...) (SOLAR/OPTIONS/COOL. FUNC.) 13.Activates heat measurement function(s) (if needed) Parallel relay (WMZ/OPTIONS/...) (SOLAR/OPTIONS/PAR.RELAS) 14.Adjust special parameters After-heating suppression (UMZ/UMZ 1 (2)/EXPERT/...) (SOLAR/OPTIONS / RH SUPPRESS.) 15.Deactivate warning message (if needed) HSE (EXPERT/...) (RRRRINGEMENT/OPTIONS/HSE) 16.Carry out sensor offset (if needed) Store loading (EXPERT/SENSORS/...) (RRRRINGEMENT/OPTIONS /STORE LORD.) Error message 17.Increase minimum speeds (if needed) (EXPERT/MESSAGE REL.) (EXPERT/RELRY/...) 18.Setup and adjust chimney sweeper function (if needed) (EXPERT/CHIMNEY SWEEPER/...) 19.Carry out relay test (MANUAL OPERATION/...) 20.Save adjustments


(USER CODE/OOD)

3.5 Overview of sensor and relay allocations

All systems reserve sensor inputs Imp1 and Imp2 for heat quantity measurement and these are therefore not listed in the tables on the following pages.

System 1 variant 1


Sensor allocation

sen.1	sen.2	sen.3	sen.4	sen.5	sen.6	sen.7	sen.8	sen.9	sen.10	sen.11	sen.12
Tcol	Tstb HSE	Th 1 T1-∆T5 Tby T-HE	Th 2 T2-∆T5	Th 3 T1-∆T6	Th 4 T2-∆T6	Th 5 T1-∆T7	Th 6 T2-∆T7 HC Tst2	Th 7 T1-∆T8 T1 WMZ1 HC T-FL	Th 8 T2-∆T8 T2 WMZ1 HC RTA11	Th 9 T1-∆T9 T1 WMZ2 HC T-outdoor	Th 10 T2-∆T9 T2 WMZ2 HC Tst1

Relay allocation

relay 1	relay 2	relay 3	relay 4	relay 5	relay 6	relay 7	relay 8	relay 9
solar pump	ext. HE	func.bl. 1	cooling func.	HSE bypass par. relay (HC-pump)	func.bl. 2 store load. HC-afterheat. (HC-Pump)	func.bl. 3 HC-Mi open	func.bl. 4 HC-Mi closed	func.bl. 5 message rel. AH suppress. HC-pump (HC-afterheat.)

System 2 variant 1

Sensor allocation

sen.1	sen.2	sen.3	sen.4	sen.5	sen.6	sen.7	sen.8	sen.9	sen.10	sen.11	sen.12
Tcol	Tstb HSE	Th 1 T1-∆T5 Tby T-HE	Th 2 T2-∆T5	Th 3 T1-∆T6	Th 4 Tcol2 T2-∆T6	Th 5 T1-∆T7	Th 6 T2-∆T7 HK Tst2	Th 7 T1-∆T8 T1 WMZ1 HC T-FL	Th 8 T2-∆T8 T2 WMZ1 HC RTA11	Th 9 T1-∆T9 T1 WMZ2 HC T-outdoor	Th 10 T2-∆T9 T2 WMZ2 HC Tst1

Relay allocation

relay1	relay 2	relay 3	relay 4	relay 5	relay 6	relay 7	relay 8	relay 9
pump col. 1	pump col. 2	func.bl. 1 ext. HE	cooling func.	HSE bypass par. relay (HC-pump)	func.bl. 2 store load. HC-afterheat. (HC-Pump)	func.bl. 3 HC-Mi open	func.bl. 4 HC-Mi closed	func.bl. 5 message rel. AH suppress. HC-pump (HC-afterheat.)

Abbreviations - sensors

Sensor	Designation
Tcol	temperature-collector
Tcol2	temperature-collector 2
Tstb	temperature-store 1 base
Tst2b	temperature-store 2 base
Tst3b	temperature-store 3 base
Tst4b	temperature-store 4 base
T-HE	temperature-heat exchanger
Тby	temperature-bypass
HSE	temperature-protection against legionella
Th 1-10	temperature-thermostat 1-10
T1-∆T5-9	temperature- Δ T5-9 high
T2-∆T5-9	temperature- Δ T5-9 low
T1-AH-HC	temperature-afterheating-heating circuit
T2-AH-HC	temperature-afterheating-heating circuit
HC T-FL	temperature- heating cicruit flow
HC T-outdoor	temperature- heating circuit outdoor
HC RTA11	heating circuit remote control
T1 WMZ	temperature- flow
	heat quantity measurement
T2 WMZ	temperature- return
	heat quantity measurement
WMZ	flowmeter
Digital input	message input

Abbreviations - relays

Relay	Designation
solar pump 1-2	solar pump collector field 1-2
2-PV st 1-4	2-port valve store 1-4
3-PV st 1-2	3-port valve store 1-2
func.bl. 1-5	function block 1-5
HSE	protection against legionella
bypass	bypass-control
cooling func.	cooling function
store load.	store loading
par. relay	parallel relay
ext.WT	external heat exchanger
message rel.	message relay
AH suppress.	afterheating suppression
HC-afterheat.	heating circuit afterheating
HC-pump	heating circuit pump
HC-Mi open	heating circuit mixer open
HC-Mi closed	heating circuit mixer closed

4. Functions and options

4.1 Menu: Solar

System:

SOLAR/OPTIONS/SYSTEM adjustment range: 1 ... 7 factory setting: 1

Hydraulic variants:

SOLAR/OPTIONS/LOADING

adjustment range: 1 ... 4 factory setting: 1

Bypass:

SOLAR/OPTIONS/BYPRSS

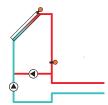
selection:"Yes","No" factory setting:"No" Select the appropriate basic system (see 3.2).

Note:

Select the basic system first, because the subsequent selection of a new system will reset all other adjustments to the factory settings!

Many hydraulic variants distinguish between pump and valve control e.g. for multiple stores. IThe adjustment has to be carried out in accordance with the overview of the basic systems with their hydraulic variants (see 3.2). Broadly speaking, variants with pumps allow speed control, variants with valves do not and will automatically set the minimum speed to 100%.

In order to prevent energy from being extracted from the store when starting store loading, this function makes sure that the cold fluid in the pipes is diverted past the store via a bypass (valve or pump). Once the pipe is warm enough, the store can be loaded.


The bypass relay is energised if the temperature at the reference sensor is by 2,5 K higher than the store temperature and if the switch-on condition for store loading (see store loading) is fulfilled. The relay is switched-off if this temperature difference is lower than 1,5 K. These temperature differences cannot be adjusted.

Variant valve or bypass

SOLAR/EXPERT/BYPRSS selection: "Valve", "Pump" factory setting: "Valve"

Variant pump:

A bypass valve is placed into the solar circuit.

The solar heat exchanger is first bypassed when store loading is possible. If the above-mentioned switch-on condition is fulfilled, the bypass relay switches the collector circuit via the heat exchanger.

In this version, a bypass pump is placed in front of the collector pump.

The bypass pump is first activated when store loading is possible. If the above-mentioned switch-on condition is fulfilled, the bypass pump is switched-off and the collector circuit pump is activated.

This variant is available in 1-collector systems only.

Bypass Sensor:

SOLAR/EXPERT/SEN. BYPR55 adjustment range: 1 ... 14 factory setting: 3

External heat exchanger:

SOLAR/OPTIONS/EXT. HEAT. EX

selection: "Yes", "No" factory setting: "No" SOLAR/RDJ. VALUES/HE ΔTON

adjustment range: 2,0 ... 19,5 K factory setting: 5,0 K SOLAR/ADJ. VALUES/HE Δ TOFF

adjustment range: 1,5 ... 19,0 K factory setting: 3,0 K SOLAR/EXPERT/SEN. EXT. HE

adjustment range: 1 ... 14 K factory setting: 4

Tube collector function:

SOLAR/OPTIONS/TUBE COL. selection: "Yes", "No" factory setting: "No" SOLAR/EXPERT/TUBE-RUN adjustment range: 5 ... 500 s factory setting: 30 s SOLAR/EXPERT/TUBE-INIT

adjustment range: 00:00 ... 00:00

factory setting: 07:00 SOLAR/EXPERT/TUBE-FINAL

adjustment range: 00:00 ... 00:00 factory setting: 19:00 SOLAR/ADJ. VALUES/TUBE COL

adjustment range: 1 ... 60 min factory setting: 30 min

2-collector systems 2 separate collector circuits (2 pumps)

shared collector circuit (1 pump)

The reference sensor is located in front of the valve or the pump respectively. The default is sensor 3, but this can be changed using this menu item.

This function is used to link loading circuits that are separated by an external heat exchanger.

The heat exchanger relay is activated if the temperature at the reference sensor exceeds the store temperature by the adjusted value "HE Δ Ton" and if the switch-on conditions for store loading (see "store loading") are fulfilled.

The relay is switched-off if this temperature difference falls below the adjusted switch-off difference HE- Δ Toff.

In contrast to the bypass function, a differential regulation between "T-HE" ("Sen. Ext. HE") and "Tst" can be carried out by means of the heat exchanger relay.

The reference sensor can be arbitrarily allocated.

In systems in which stores are equipped with their own loading pumps, the relay "external heat exchanger" controls the primary circuit pump.

This function helps overcome the non-ideal sensor position with some tube collectors.

This function operates within a given time frame ("tube init" and "tube-final"). It activates the collector circuit pump for 30 seconds (adjustable via the parameter "tuberun") every 30 minutes (adjustable via the parameter "tube col") in order to compensate for the delayed temperature measurement.

If the collector sensor is defective or the collector is blocked, this function is suppressed or switched-off.

The collector circuit is operated at minimum pump speed.

Both collectors are operated independently from each other by means of this function.

If a store is being loaded by one collector, the other one is nevertheless operated after the adjusted standstill time.

If store loading is carried out by one collector, the other one is nevertheless operated after the adjusted standstill time.

This means the pump speed may reduce briefly to the minimum as the normal pump speed is ignored by the controller

The collector cooling function starts, when the adjusted ma-

Cooling function (1-store systems): <i>SOLRR/OPTIONS/COOL FUNE.</i> selection: "Yes", "No" factory setting: "No"	The cooling function can be used in 1-store systems (basic systems 1 and 2). If the store temperature exceeds its maxi- mum limitation (Tstmax), the surplus energy in the collector can be diverted. The minimum pump speed is set to 100%.
Function (switching conditions):	If Tstmax is exceeded, and the switch-on temperature dif- ference Δ Ton between collector and store are reached, the solar circuit (primary) and the cooling relay are operated. If the store temperature falls to less than Tstmax, the cooling relay switches off.
	If the switch-off temperature difference Δ Toff is underrun during this period, the solar circuit and the cooling relay are switched-off.
2-collector system: (basic system 2)	In this system, only the collector circuit which fulfills the switch-on conditions described above, is operated.

Collector cooling function:

ximum collector temperature is reached. If this temperature SOLAR/OPTIONS/COL. COOLING is underrun by 5 K, this function is switched off. selection: "Yes", "No" The collector is cooled via heat transfer to the next free factory setting:"Yes": store (a store which is not blocked). The numerically last SOLAR/ADJ. VALUES/TCOLMAX store is not used (swimming pool protection or in the case adjustment range: 80 ... 160 °C of multi-store systems). Note this may overide Tstmax so factory setting: 105 °C additional scald protection may be needed. hysteresis 5 K The pump output (provided that it is activated) is controlled with maximum relative pump speed. Note: It is not possible to adjust a temperture value for the maximum collector temperature (Tcolmax) which is higher than the collector safetey shutdown temperature. There must be a difference between these two temperatures of at least 10 K. **2-collector systems:** 2 separated collector circuits (2 pumps): The collector circuit which needs to be cooled is operated. If one store is being loaded by another collector, this loading is continued. shared collector circuit (1 pump): "Pump speed" depends on collector coolingwhich takes priority.

		This function is used for keeping the system temperatures and consequently the thermal load as low as possible.
SOLAR/OPTIONS/RECOOLING selection:"Yes","No" factory setting:"Yes"		If the temperatures of all stores of the system have excee- ded the maximum temperature, the Tstmax for the first store is temporarily overidden to reduce the surplus energy via the pipework and the collector. Note Tstmax may be exceeded so additional scald protection may be required.
		This "circulation" is switched-off once the maximum store temperature is underrun by 2 K.
	2-collector systems:	Both collector circuits are activated in a 2-collector system.
Combination with collector cooling function:		If the option "collector cooling" is activated in addition to the recooling function, the behaviour of the recooling function changes.
		The objective is now to dissipate the energy supplied by collector cooling.
		If the temperature at the collector decreases by 5 K below that of the store, the recooling function is activated and the loading circuit is again operated to cool the store.
		If the difference between collector and store decreases below 3 K during that cooling period, the function is swit- ched-off.
	2-collector system:	In a 2-collector system, the collectors are operated separa- tely using the switch-on conditions described above.
Frost protection: SOLAR/OPTIONS/FROST PROT. selection: "Yes", "No"		As soon as the temperature at the collector is 4 °C, the frost protection function operates the loading circuit between the collector and the 1 st store in order to protect the medium in the loading circuit against freezing or coagulation.
factory setting:"No"		If the collector temperature exceeds 5 °C, this function is switched-off. If the 1 st store in the system is blocked, this function is switched off or suppressed.
		The pump output uses maximum pump speed.
	2-collector system:	In these systems, the circuit which fulfills the switch-on conditions described above is operated.

Target temperature:

SOLAR/OPTIONS/TARGET TER. selection: "Yes", "No" factory setting: "No" if you select "Yes": SOLAR/ADJ. VALUES/TEOLSET adjustment range: 20 ... 110 °C factory setting: 65 °C Pump speed is controlled according to collector temperature rather than (usual) temperature difference. The aim is to maintain constant collector temperature, adjustable with parameter "Tcolset".

Parallel relay:

SOLAR/OPTIONS/PAR. RELAY selection: "Yes", "No" factory setting: "No" If the solar circuit pump is switched-on, this relay is activated in parallel.

In 2-collector systems which are working with 2 pumps, the parallel relay is activated if one of the 2 pumps is activated.

CS-Bypass:

SOLAR/OPTIONS/C5-BYPR55 selection: "Yes", "No"

factory setting: "No" if you select "Yes": SOLAR/ADJ. VALUE5/C5-BYP. adjustment range: 100 ... 500 W/m² factory setting:: 200 W/m² If the irradiation exceeds the adjusted value CS-bypass, the collector circuit is operated. It is switched off when the irradiation has fallen below the value "CS-bypass" for at least 2 minutes.

The collector circuit is operated with minimum pump speed.

2-collector systems: If a loading of the stores is carried out in these systems, the function is switched-off.

This function is activated if a previously selected solar store (parameter designation: "AH suppress." in the menu solar expert) is being loaded.

Solar loading means that store loading is only carried out for energy supply and not for cooling purposes etc.

selection: "Yes", "No" factory setting: "No" if you select "Yes": SOLAR/EXPERT/RH SUPPRESS.

SOLAR/OPTIONS/AH SUPPRESS.

Afterheating suppression:

adjustment range: St 1 ... St 4 factory setting: St 1

Collector emergency shutdown:

SOLAR/ADJ. VALUES/TCOLSEC

adjustment range: 110 ... 200 °C factory setting: 140 °C hysteresis: 10 K

collector blocked

At high collector temperatures (depending on system pressure or antifreeze concentration etc.) the systems is shut off.This means that solar loading is not possible.

If the adjusted temperature threshold "Tcolsec" is exceeded, the corresponding collector will no longer be used for loading.

A collector is considered to be blocked, if either the sensor is defective or the emergency shutdown temperature is reached.

Collector minimum limitation:

SOLAR/EXPERT/TCOLMIN

adjustment range: -25 ... 90 °C factory setting: 20 °C hysteresis 2 K

St2on...St4off:

SOLAR/OPTIONS/ST2 ON (... ST4 ON) selection:"Yes","No" factory setting:"Yes"

Store loading:

SOLAR/ADJ. VALUES/ Δ TON (... Δ TYON)

adjustment range: 1,0 ... 20,0 K factory setting: DeltaTon: 6,0 K DeltaT2/3/4on: 6,0 K SOLAR/RDJ. $VRLUES/\Delta TOFF$ (... $\Delta TYOFF$)

adjustment range: 0,5 ... 19,5 K factory setting: DeltaToff: 4,0 K DeltaT2/3/4off: 4,0 K

SOLAR/ADJ. VALUES/ATSET (...AT4SET)

adjustment range: 2,0 ... 30,0 K factory setting: 10 K

Store maximum limitation:

SOLAR/ADJ. VALUES/TSTAAX (...TSTYAAX)

adjustment range: 4 ... 95 °C factory setting: Tstmax: 65 °C Tst2/3/4max: 65 °C

Hysteresis

SOLAR/EXPERT/AT-STMAX (...AT-STYMAX)

adjustment range: 0,5 ... 5,0 K factory setting: 2,0 K

This is the minimum temperature which must be exceeded for the solar pump to switch on. If the adjusted minimum temperature is not exceeded or the condition "collector blocked" is fulfilled.

By means of this function, the respective store can be "removed" from solar control. This means that it is no longer considered for solar loading.

The temperature of the store will be indicated but a sensor defect will not be recognised.

If the adjusted switch-on difference Δ Ton between collector and store is exceeded, the store will be loaded.

If this difference falls below the adjusted switch-off difference Δ Toff, the loading function will be switched off.

Loading of the store will also be switched-off or suppressed if the relevant store or collector is blocked (collector blocked, see collector minimum limitation) or if the store is at maximum limitation, e.g. Tstmax.

The parameter " Δ Tset" is the nominal temperture difference between collector and store used for pump speed control. Once $\Delta \mathsf{T}\mathsf{set}$ is reached, the pump speed is increased by 10 %.

If the adjusted maximum temperature Tstmax is exeeded, loading of the store is stopped. If the store cools down by more than 2 K (hysteresis), the store will be loaded again.

store emergency shutdown value 95 °C hysteresis = 2 K	If the cooling options are activated the store will be loaded beyond th temperature.
	In order to avoid too high tempera emergency shutdown of the store is which also blocks the store for th store reaches the temperature of shutdown is activated

store blocked

(e.g. collector cooling), he adjusted maximum

tures in the store, the s additionally provided, e cooling options. If a 95 °C, the emergency

A store is blocked if either the corresponding sensor is defective or the emergency shutdown temperature has been reached.

Priority logic and store sequence control:

SOLAR/ADJ. VALUES/PRIORITY ST1 (...ST4) adjustment range: 1 ... 4 factory setting: 1; 2; 3; 4 Priority logic is used in multi-store systems only.

If St1, St2, St 3, St4 are set to 1, the stores with a temperature difference to the collector are loaded in parallel as long as their switch-on conditions are fulfilled.

If St1 is set to 1, St2 to 2, St 3 to 3, and St4 to 4 (factory setting) the first store will be loaded first as long as its switchon conditions are fulfilled. When the selected priority store reaches its adjusted maximum temperature, the subordinate stores will be loaded in numerical order via oscillating loading: store 1, then store 2, then store 3, then store 4.

Store sequence control:

SOLAR/EXPERT/T-CIRC.

adjustment range: 1 ... 60 min factory setting: 15 min

Loading break time:

SOLAR/EXPERT/T-ST

adjustment range: 1 ... 60 min factory setting: 2 min

Collector rise temperature:

SOLAR/EXPERT/AT-COL

adjustment range: 1 ... 10 K factory setting: 2 K

Balance values:

SOLAR/BALANCE VALUES

The controller checks whether the stores can be loaded.

When the priority store cannot be loaded, the subordinate stores are checked. If a subordinate store can be loaded, it will be loaded for the "oscillating loading time" ("t-circ."). After this period of time, the loading process stops. The controller monitors the increase in collector temperature. If it increases by the "collector rise temperature"(Δ T-col) within the loading break time "t-st", the elapsed break time is set to 0. The break time starts again.

As soon as the switch-on condition of the priority store is fulfilled, it will be loaded. If the switch-on condition of the priority store is not fulfilled, loading of the subordinate stores will be continued. If the priority store reaches its maximum temperature, oscillating loading will not be carried out.

The controller has integrated registers which record the following values:

- maximum temperatures
- operating hours of the relays
- operating days since commissioning of the controller

The values can be reset, except "operating days".

4.2 Menu: Arrangement

HSE (protection against legionella):

RRRANGEMENT/OPTIONS/HSE

selection "Yes", "No" factory setting: "No" *ARRANGEMENT/ADJ. VALUES/T-START* adjustment range: 00:00 ... 00:00 factory setting: 17:00

RRRRNGEMENT/EXPERT/SEN-HSE

adjustment range: 1 ... 14 factory setting: 2

Store loading:

RRRANGEMENT/OPTIONS/STORE LORD.

selection: "Yes", "No" factory setting: "No" *RRRANGEMENT/ADJ. VALUES/T-TH3DN*

adjustment range: -40,0 ... 250,0 °C factory setting: 140,0 °C ARRANGEMENT/ADJ. VALUES/T-TH30FF

adjustment range: -40,0 ... 250,0 °C factory setting: 130,0 °C *RRRANGEMENT/EXPERT/SEN-TH3*

adjustment range: 1 ... 14 factory setting: 5 RRRANGEMENT/EXPERT/SEN-THY

adjustment range: 1 ... 14 factory setting: 6

ARRAINGEMENT/OPTIONS/TIMER2

Selection: "Yes", "No" factory setting: "No" RRRANGEMENT/RDJ. VALUES/TIMER2/T1(T2,T3)ON

adjustment range: 00:00 ... 00:00 factory setting: 00:00 RRRNGEMENT/RDJ. VRLUE5/TIMER2/T1(T2,T3)DFF

adjustment range: 00:00 ... 00:00 factory setting: 00:00

The HSE-function checks whether the temperature at the given sensor (Sen-HSE) exceeds 60 $^{\circ}$ C at certain times for legionella control.

If 60 °C has not been achieved by the HSE start time, the HSE relay is energised in order to activate e.g. afterheating. The HSE start time (t-start) is adjustable.

The relay is switched-off once 60 $^{\circ}$ C is reached at the relevant sensor (factory setting 2 - selectable) or at midnight (reset point).

If the relevant sensor is defective, this function is suspended.

In order to carry out afterheating of a store within a store volume (zone), this function uses 2 sensors (default 5 and 6) to monitor the switch-on and switch-off level.

The switch-on and -off temperatures Th3on and Th3off are used as reference parameters.

Adjust the reference sensors via Sen-Th3 and Sen-Th4.

If the measured temperatures at both reference sensors fall below the adjusted switching treshold Th3on, the relay is switched-on. It is switched-off if the temperature at both sensors is higher than Th3off.

If one of the two sensors is defective, store loading is suppressed or switched off.

In addition to the above, a timeswitch can be set to temporarily block operation in three time frames by means of the daily timer 2.

Function blocks:

ARRANGEMENT/OPTIONS/THERMO. 1 (...10)

Selection: "Yes", "No" factory setting: "No" RRRANGEMENT/OPTIONS/AT-FUNCS (....9)

selection: "Yes", "No" factory setting: "No" *ARRANGEMENT/OPTIONS/TIMER 1 (...5)* Selection: "Yes", "No"

factory setting:"No"

 $\begin{array}{l} \textit{ARRANGEMENT/EXPERT/SEN.-TH1 (...10)} \\ \textit{ARRANGEMENT/EXPERT/SEN1-$$$ (...9)} \\ \textit{ARRANGEMENT/EXPERT/SEN2-$$$ (...9)} \end{array}$

Thermostat function (function block 1...5):

ARRANGEMENT/OPTIONS/THERMO. 1 (...10) Selection: "Yes", "No" factory setting: "No"

RRRANGEMENT/RDJ. VRLUES/T-TH1(...10)0N

adjustment range: -40,0 ... 250,0 °C factory setting:Th1/2/5/6/7/8/9/10on: 40,0 °C Th3on: 140,0 °C,Th4on: 65,0 °C

ARRANGEMENT/ADJ. VALUES/T-TH1(...10)OFF

adjustment range: -40,0 ... 250,0 °C factory setting:Th1/2/5/6/7/8/9/10off: 45,0 °C Th3off: 130,0 °C,Th4off: 64,5 °C

ARRANGEMENT/EXPERT/SEN-TH1 (...10)

adjustment range: 1 ... 14 factory setting: 3 (...12)

Δ T-function (function block 1...5):

ARRANGEMENT/OPTIONS/ Δ *T-FUNCS (...9)* selection: "Yes", "No" factory setting: "No"

ARRANGEMENT/ADJ. VALUES/ATS(...9)ON

adjustment range: 1,0 ... 50,0 K factory setting: DeltaT5/6/7/8/9on: 5,0 K

ARRANGEMENT/RDJ. VALUES/ATS(...9)0FF

adjustment range: 0,5 ... 50,0 K factory setting: DeltaT5/6/8/9off: 3,0 K DeltaT7off: 2,0 K Depending on the selected system and activated options, there are up to 5 function blocks including thermostat functions, timer and differential functions. With these, further components or functions e.g. solid fuel boiler, heating backup and DHW afterheating can be implemented (for example see 3.3).

Function blocks are assigned to the relays (see 3.5) and the relay cannot be changed. Each function block has allocated sensors that can be changed in the expert menu if needed. It is also possible to ,,double up" in the programming and use a sensor already allocated to another function. E.g. the collector sensor can double as a flow sensor for heat quantity.

Within a function block the functions are interconnected (AND gate). This means that the conditions of all the activated functions have to be fulfilled (e.g. thermostat and timer) for switching the allocated relay. As soon as one condition is not fulfilled, the relay is switched off.

The relay allocated to the function block is switched on, when the adjusted switch-on temperature (Th(x)on) is reached. It is switched off when the adjusted switch-off temperature (Th(x)off) is reached. The switching conditions of all other activated functions of the function block have to be fulfilled as well.

Allocate the reference sensor in the expert menu.

Adjust the maximum temperature limitation with Th(x) off> Th(x)on and the minimum temperature limitation with Th(x)on> Th(x)off. The temperatures cannot be set to an identical value.

The relay allocated to the function block is switched on as soon as the adjusted switch-on temperature ($\Delta Th(x)$ on) is reached. It is switched off as soon as the adjusted switch-off temperature ($\Delta Th(x)$ off) is reached. The switching conditions of all other activated functions of the function block have to be fulfilled as well.

27 |

Adjust the reference sensor in the expert menu.

ARRANGEMENT/EXPERT/SEN 1-ATS (...9)

adjustment range: 1 ... 14 factory setting: Sen1DeltaT5: 3, Sen1DeltaT6: 5 Sen1DeltaT7: 8, Sen1DeltaT8: 9, Sen1DeltaT9: 11 ARRANGEMENT/EXPERT/SEN 2- Δ TS (...9)

adjustment range: 1 ... 14 factory setting: Sen2DeltaT5: 4, Sen2DeltaT6: 6, Sen2DeltaT7: 7, Sen2DeltaT8: 10, Sen2DeltaT9: 12

Timer function (function block 1...5):

ARRANGEMENT/OPTIONS/TIMER 1 (....5) Selection:"Yes","No" factory setting:"No" ARRANGEMENT/ADJ. VALUES/TIMER 1 (...5)/T1(2,3)-ON

adjustment range: 00:00 ... 00:00 factory setting: 00:00 ARRANGEMENT/ADJ. VALUES/TIMER 1 (....5)/T1(2,3)-OFF

adjustment range: 00:00 ... 00:00 factory setting: 00:00

Each timer function provides up to 3 time frames. The relay allocated to the function block is activated as long as the time frame (t(x)on ... t(x)off) is open. The switching conditions of all other activated functions of the function block have to be fulfilled as well.

4.2.1 Heating circuits:

The controller can control two independent weathercompensated heating circuits. One heating circuit can be controlled via the internal heating circuit function and a second via an additional external module HKM2.

Internal heating circuit control:

ARRANGEMENT/HEAT.CIRCUITS/OPTIONS/HEAT.CIRC. selection:"Yes","No" factory setting:"No"

Flow temperature

RRRANGEMENT/HERT.CIRCUITS/HERTING CIRCUIT/TFLOW

Outdoor temperature

ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ ТОЦТО.

Set flow temperature

ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ FLOW SET

The internal heating circuit is activated in this menu.

The TFlow-value indicates the measured actual flow temperature of the heating circuit.

The Temperature-outdoor-value indicates the measured outdoor temperature depending on weather conditions.

The set flow temperature is calculated from the measured outdoor temperature and the heating curve. Onto this, the dial setting of the remote control (RTA11-M) and the controller day correction or night correction are added.

Set flow temperature = heating curve temperature + remote control + (day correction or night correction). If the calculated set flow temperature is higher than the adjusted maximum flow temperature, the set flow temperature will be equated with the maximum flow temperature.

Night correction:

ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ NIGHT CORR. adjustment range: -20...+30 K factory setting: -5 K

Day correction:

RRRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ DRY CORR.

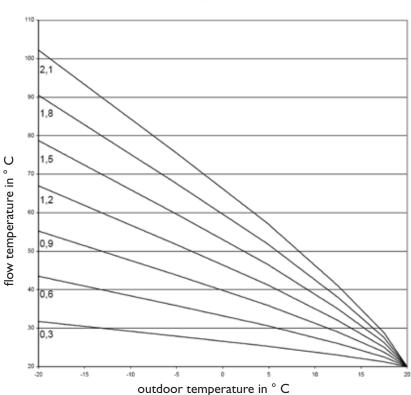
adjustment range: -5 ... +45 K factory setting: 5 K

Maximum flow temperature:

ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ TFLOW MAX adjustment range: 10...+100°C factory setting: 50°C

Heating curve:

ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ HEAT. CURVE adjustment range: 0,3 ... 3,0


factory setting: 1,0

Adjustment channel for night correction (night set back) of the heating circuit. For the night correction function, time frames (see below) can be adjusted. Within these time frames, the set flow temperature of the curve will be decreased (set back) by the adjusted temperature value.

Adjustment channel for the day correction function of the heating circuit. The day correction function is always activated **outside** the 3 time frames of the night correction function and generally raises or lowers the setpoint during building occupation. The set flow temperature of the curve will be decreased or increased by the adjusted temperature value.

Adjustment channel for the admissible maximum flow temperature of the heating circuit. If the maximum flow temperature is exceeded, the heating circuit will be switched off. (the mixer will close and the pumps will be switched off).

The heating curve used by the controller can be increased or decreased to suit the building heating load as shown in the family of curves below. Increasing this value has the effect of raising the flow set temperature, reducing the value will lower the set flow temperature.

heating curves

Mixer:

ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/MIXER adjustment range: 1...20 s factory setting: 4 s

Summer:

ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ SUMMER

adjustment range: 0...40 °C factory setting: 20 °C

Store priority:

ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ STORE PRID.

selection: "Off", "On" factory setting: "Off"

Timer:

ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ TIMER/MODE

selection: "Night / Day", "Off / Day", "Without" factory setting: "Night / Day" RRRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/TIMER/ T1(...21)-DN

adjustment range: 00: 00 ... 00:00 factory setting: 22:00 (t1...t7-on)

RRRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/TIMER/ T1(...21)-OFF

adjustment range: 00: 00 ... 00:00 factory setting: 05:00 (t1 ... t7-off)

Example: The night correction runs from Monday to Tuesday from 22:00 to 6:00 and Tuesday from 15:00 to 18:00, when t1-on is set to mon 22:00, t1-off to tue,6:00 and t2-on to tue,15:00 and t2-off to tue,18:00.

Flow sensor:

ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ EXPERT/SEN.FLOU.

adjustment range: 1 ... 14 factory setting: 9

Outdoor temperature sensorsensor:

RRRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ EXPERT/SEN.DUTDOOR

adjustment range: 1 ... 14 factory setting: Sensor 11 The mixer function controls the mixing valve position according to the difference between the actual flow temperature and the set flow temperature. The valve is opened or closed in pulses depending on this deviation. The parameter "", xer" allows the pulse operating time to be matched to suit the valve operating time.

Adjustment channel for summer operation. If the outdoor temperature exceeds the adjusted value, the heating circuit will be switched off. The hysteresis is 1,0 K.

This function switches off the heating circuit when domestic hot water is being afterheated.

For this purpose, the option domestic hot water priority and afterheating via store loading (see 4.2) of the controller $DeltaSol^{\otimes} \mathbf{M}$ have to be active as well.

The timer determines whether day correction or night correction (set back) is used for changing the set flow temperature. 21 different time frames (3 for each day) can be set for night correction of the heating circuit.

If one of the time frames is set to 'active', night correction will be active.

If none of them is active, the set flow temperature will be adapted with day correction. The timers are pre-allocated such that every day from 10:00 pm to 5:00 am (the following day) night set back is activated.

The mode determines the operation mode of the timer:NIGHT/ DRYtime frame for night correctionOFF / DRYtime frame for heating circuit offWITHOUT:timer deactivated

Adjustment channel for allocating the flow sensor.

The default is sensor 9 - this can be reallocated if needed. A sensor which is already in use can be allocated without influencing its original function in the system.

Adjustment channel for allocating the outdoor temperature sensor.

The default is sensor 11 -this can be reallocated if needed. A sensor which is already in use can be allocated without influencing its original function in the system.

Note:

If an additional external module HKM2 is additionally used, only 1 outdoor temperature sensor is required. In order to ensure that both heating circuits use the same outdoor temperature, adjust to sensor 16.

Afterheating

RRRANGEMENT/HERT.CIRCUITS/HERTING CIRCUIT/ EXPERT/RFT.-HERT.

selection: "None", "Therm.", "Store" factory setting: "None"

RRRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ EXPERT/ Δ T RH ON

adjustment range: -15,0 ... 49,5 K factory setting: 4,0 K ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ EXPERT/AT AH OFF

adjustment range: -14,5 ... 50,0 K factory setting: 14,0 K

Sensor 1 store

RRRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ EXPERT/S1 STORE

adjustment range: 1 ... 14 factory setting: 12

Sensor 2 store

ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ EXPERT/S2 STORE adjustment range: 1 ... 14 factory setting: 8

Heating circuit relay allocation

ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ EXPERT/HC RELAY VAR. selection: 1, 2, 3 factory setting: 1 The set flow temperature is compared with the temperature at one or two store (buffer) reference sensors (differential control). If this temperature differential is to small (Δ THon), afterheating will be activated. It will be switched off, if the differential (Δ THoff) between store and set flow temperature is large enough.

Select the after-heating type via the parameter "Aft.-Heat." ("None", "Therm.", or "Store").

If "None" is selected, no afterheating will be carried out.

If "Therm." is selected, the set flow temperature is compared with a store reference sensor.

If "Store" is selected, the comparison is made with 2 reference sensors. The switching conditions to both reference sensors have to be fulfilled.

With this parameter, the 1st reference sensor for heating circuit afterheating can be selected.

With this parameter, the 2^{nd} reference sensor can be selected for store dependent afterheating.

With the parameter "HC Relay var." it is possible to choose different relay allocations for the heating circuit pump and heating circuit afterheating. Factory setting "1" is the standard relay allocation (see 3.5).

If "2" is selected, the relays of the heating circuit pump and HC-afterheating are interchanged.

If "3" is selected, HC-afterheating is allocated to relay 9 and the heating circuit pump to relay 5 (for systems 1 - 4 only).

As soon as in the basic systems 1 - 5 an option referring to relay 6 is activated (or relay 3 in basic systems 6 and 7 respectively), the parameter "HC Relay Var." will be blocked. Therefore, the following steps have to be carried out in the correct order (see also 3.4):

1. Select basic solar system and hydraulic variant

2. Activate heating circuit and select relay allocation.

3. Activate options (e.g. store loading).

31 |

Manual correction (remote control)

RRRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ EXPERT/MAN. CORR. selection: "Yes", "No" factory setting: "No" The remote control (RTA11-M) allows manual adjustment of the heating curve (± 15 K).The remote control is optional and it is not included in the full kit.

The heating circuit can be switched off manually, if the remote control is set to the position "heating circuit off".

Heating circuit switched-off means that the heating circuit pump is switched off and the mixer closed.

Flow temperature is boosted to maximum for rapid heating when the remote control it is set to "rapid heating".

Sensor remote control

ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ EXPERT/SEN. REMOTE adjustment range: 1 ... 14 factory setting: 10

Pump HCmax

ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ EXPERT/PUMP HEMAX selection: "ON", "OFF" factory setting: "OFF"

Chimney sweeper

ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/ EXPERT/CHIMNEY selection: "Yes", "No" factory setting: "No" Adjustment channel for allocating the remote control sensor. The factory setting is sensor 10.

With this option it is possible to determine whether the heating circuit pump remains switched-on or should be switched off when the adjusted maximum flow temperature is reached.

When this option is activated, the heating circuit opens (mixer opens) and the heating circuit pump is switched-on (provided that the chimney sweeper function is active, see 4.4).The protective function of the heating pump maximum limitation will still be active.

External heating module:

Heating module

ARRANGEMENT/HEAT.CIRCUITS/OPTIONS/HE MODULE selection: No / HCM1 / HCM2 factory setting: "No" ARRANGEMENT/HEAT.CIRCUITS/HEATING CIRCUIT/

EXPERT/SEN.OUTDOOR

adjustment range: 1 ... 21 factory setting: 11 change to: 16

ARRANGEMENT/HEAT.CIRCUITS/HC MODULE ...

An additional external heating circuit module can be activated (HKM) if a further compensated heating circuit is required.

If the external heating circuit module HKM2 is additionally used, only 1 outdoor temperature sensor is required.In order to ensure that both heating circuits control using the same outdoor temperature, adjust to sensor 16 and connect the external sensor to the HKM module.

The displays and functions are similar to that of the internal heating circuit (see also manual HKM2). The parameter "heating circuit relay allocation" is not available.

4.3 Menu: Heat quantity measurement

WMZ/OPTIONS/WMZ 1 (2, MODULE)

selection:"Yes","No" factory setting:"No" UNZ/UNZ 1 (2)/ EXPERT/FLOUMETER

Selection:"Yes","No" factory setting:"Yes" UNZ/UNZ 1 (2)/EXPERT/SEN. FLOU

adjustment range: 1 ... 14 factory setting:WMZ 1= 12,WMZ 2= 11 UMZ/UMZ 1 (23/EXPERT/SEN. RETURN

adjustment range: 1 ... 14 factory setting:WMZ 1= 10,WMZ 2= 10 The controller has two separate integrated calorimeters which can be configured with or without flowmeter V40. Furthermore, the values of a separate WMZ module can be displayed.

Allocate the sensors.

Factory settings are as shown – but other sensors can be allocated without influencing their orginal function in the system. E.g. the collector sensor could be used for the flow sensor if desired.

Heat quantity measurement without flowmeter V40 $\,$

set WNZ/OPTIONS/WNZ 1 (2) to "Yes" and WNZ/WNZ 1 (2)/EXPERT/FLOWNETER to "No" WNZ/WNZ 1 (2)/EXPERT/FLOW adjustment range: 1,0 ... 50,0 I factory setting: 3,0 I WNZ/WNZ 1 (2)/EXPERT/RELRY

adjustment range: 1 ... 9 factory setting: 1

Heat quantity measurement with flowmeter V40

set UNZ/OPTIONS/UNZ 1 (2) to"Yes" and UNZ/UNZ 1 (2)/EXPERT/FLOUNETER to "Yes"

UNZ/UNZ 1 (2)/EXPERT/VOL./PUL5. adjustment range: 0,5 ... 99,5 (liter/pulse) factory setting: 1 (liter/pulse)

Antifreeze type

WMZ/WMZ 1 (2)/EXPERT/ANTIFREEZE TYPE selection: 0,1, 2, 3 factory setting: 0

Antifreeze

WMZ/WMZ 1 (2)/EXPERT/RNTIFREEZE adjustment range: 20 ... 70 Vol % factory setting: 45 Vol %

Heat quantity

UNZ/UNZ 1 (2)/HERT

tity measurement is carried out when the output selected in the "relay" menu is active.

The heat quantity measurement calculation uses the difference between flow and return temperature and the user

entered flow rate. The flow rate should be read from the

window of the flow setter at 100 % pump speed. Heat quan-

The heat quantity measurement calculation uses the difference between flow and return temperature and the volume flow transmitted by the flowmeter V40.

Adjust the pulse rate corresponding to the flowmeter V40 used (See the flag on the V40 cable):

V40-06: 1 litre/pulse V40-15: 10 litres/pulse others: 25 litres/pulse

Adjustment channel to ensure the contoller uses the correct specific heat capcacity for the heat transfer fluid used 0 for water $% \left({\left[{{{\rm{c}}} \right]_{{\rm{c}}}} \right)_{{\rm{c}}} \right)$

1 for propylene glycol 2 for ethylene glycol 3 for Tyfocor® LS

Adjustment channel for the concentration water/ glycol for antifreeze types 1 and 2.

The overall heat quantity results from the sum of the values in Wh, kWh and MWh.

The different values can be reset to 0. To reset, select the desired value and answer the security prompt "Save?" with "No".

4.4 Menu: Expert

System warning "AT too high"

EXPERT/ ΔT TOO HIGH selection: "Yes", "No" factory setting: "Yes"

System warning "Non-ret. valve"

EXPERT/NDN-RET. VAL. selection: "Yes", "No" factory setting: "Yes"

Message relay (error message)

EXPERT/MESSAGE REL. selection: "Yes", "No" factory setting: "Yes"

Chimney sweeper

EXPERT/CHIMNEY selection: "Yes", "No" factory setting: "No" EXPERT/CHIMNEY SWEEPER

Sensor offset

EXPERT/SENSORS/CS-TSPE selection: A, B, C, D, E factory setting: E EXPERT/SENSORS/CS-RDJUST EXPERT/SENSORS/CS-OFFSET EXPERT/SENSORS/SENSOR 1 (...12) adjustment range: -5,0 ... 5,0 K factory setting: 0,0 K

| 34

This message is shown, if solar loading has been carried out for a period of 20 minutes with a differential higher than 50 K.

The message function can be deactivated by selecting "No".

This message is shown if between 11 p.m. and 5.00 a.m. the collector temperature is higher than 40 $^{\circ}$ C or a store is loaded because of a high temperature difference.

The message function can be deactivated by selecting "No".

Activate this function by selecting "Yes". If the controller detects a fault, the message relay is energised (e.g. for signal lights).

These errors are:

- Sensor defective
- Real-time-clock (RTC) defective
- Storage module (EEPROM) defective

Please note that a message caused by one of the plausibility controls (non-return valve, ΔT too high) does not activate the relay.

This function is used for activating a given relay state when required.- e.g.flue gas measurement if the system controls a boiler. Activate this function by selecting "Yes".

Adjust the required relay status in the chimney sweeper menu (expert / chimney sweeper).

If the chimney sweeper function is activated, "chimney sweeper" is indicated in the main menu.

Adjust the CS-type in this menu. The CS-type should be matched to the code letter printed on the CS type label.

The CS-offset adjustment should be carried out with the irradiation sensor disconnected.

Furthermore, an offset for sensors 1 ... 12 can be carried out.

Advanced DeltaSol[®] M Controller

Minimum speed

EXPERT/RELRY/IIIN SPEED 1 (...4) adjustment range: 30 ... 100 % factory setting: 30 % Relays 1 to 4 are semiconductor relays for pump speed control of standard pumps. Relative pump speed is adapted in 10 % steps to the current temperature difference between the collector and the store (see also 4.1 speed control).

In some cases, it is necessary to adapt the factory setting of the minimum pump speed (30%). If it is set to 100%, pump speed control is deactivated (valves).

In the submenu "language", different languages are availabe.

Language

EXPERT/LANGUAGE factory setting:"German"

4.5 Menu: manul mode

nanual operation/all relays nanual operation/relay 1 (...9) selection: "Off", "Auto", "On" factory setting: "Auto" In this menu, individual or all relays can be switched-on (relay test), switched-off, or set into automatic mode.

5. Accessory

5.1 Sensors

sensor in immersion sleeves

Precision-platin sensors PT1000 (**553001048** and **553001049**) are used for the controller DeltaSol[®] M.

Depending on the individual solar system, the product range contains 3 different sensor types: sensors with immersion sleeves, flatscrew sensors and cylindrical clip-on sensors. The sensor types FK and FR have the same electrical features and are available in the same models, they only differ in the connecting cable:

553001048: 1,5 m weather- and temperature resistant silicone cable for temperatures between -50 $^{\circ}$ C ... +180 $^{\circ}$ C, mostly used for collectors.

553001049: 2,5 m PVC cable for temperatures between -5 °C ... +80 °C, mostly used for stores.

Photocell

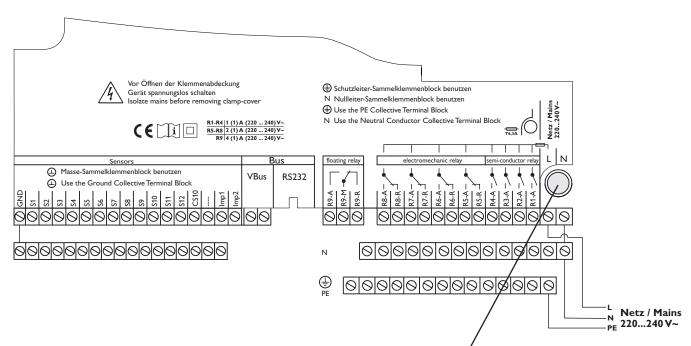
The solar cell CS10 is used for detecting the light intensity. The short-circuit current rises with the increase in light intensity. The relationship between short-circuit current and light intensity is directly proportional. The connecting cable can be extended by up to 100 m.

Flowmeter

The V40 is a measuring instrument for detecting the flow of water or water/glycol mixtures and is used in combination with the calorimeter integrated into the DeltaSol[®] M.After a specific volume has passed, the V40 reed switch sends an impulse to the calorimeter. The heat quantity used is calculated by the calorimeter using these impulses and the measured temperature difference with the help of pre-defined parameters (glycol type, concentration, heat capacity, etc.). WARNING!

opening the housing!

Switch-off power supply and


disconnect from mains before

6. Troubleshooting

If the controller DeltaSol® M does not work correctly, please check the following items:

1. Power supply:

Check power supply if the control lamp is extinguised. The controller is protected with 1 can fuse. T6,3 A. This fuse can be replaced when the cover and the terminal cover are removed (spare fuse is enclosed in accessory bag).

can fuse T6,3A

°C	Ω	°C	Ω
-10	961	55	1213
-5	980	60	1232
0	1000	65	1252
5	1019	70	1271
10	1039	75	1290
15	1058	80	1309
20	1078	85	1328
25	1097	90	1347
30	1117	95	1366
35	1136	100	1385
40	1155	105	1404
45	1175	110	1423
50	1194	115	1442

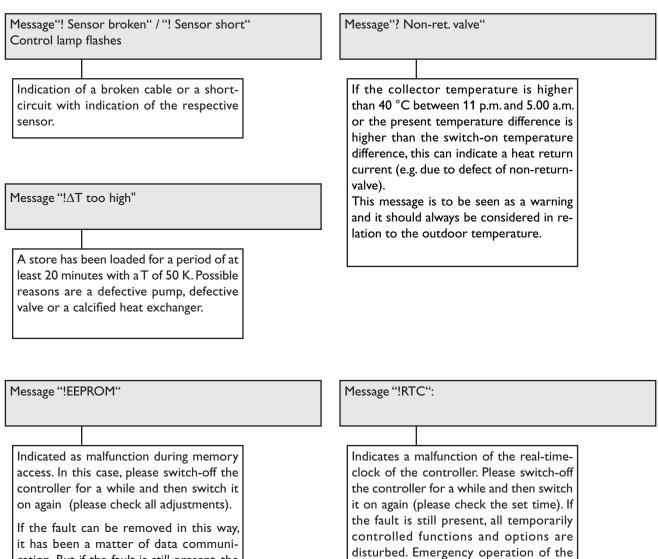
resistance values of Pt1000-sensors

2. Sensor defects:

The control lamp for operation flashes red and a message is shown in the display if there is a defect in the control circuit caused by a defective senso.

I SENSOR BROKEN for a broken sensor cable and *I SENSOR SHORT* for a sensor cable short circuit appears and the defective sensor is indicated.

Short-circuit: Short-circuit of a sensor cable with indicaton of the respective temperature sensor. The error code -88.8 is shown in the display.
Broken cable: Broken sensor cable with indication

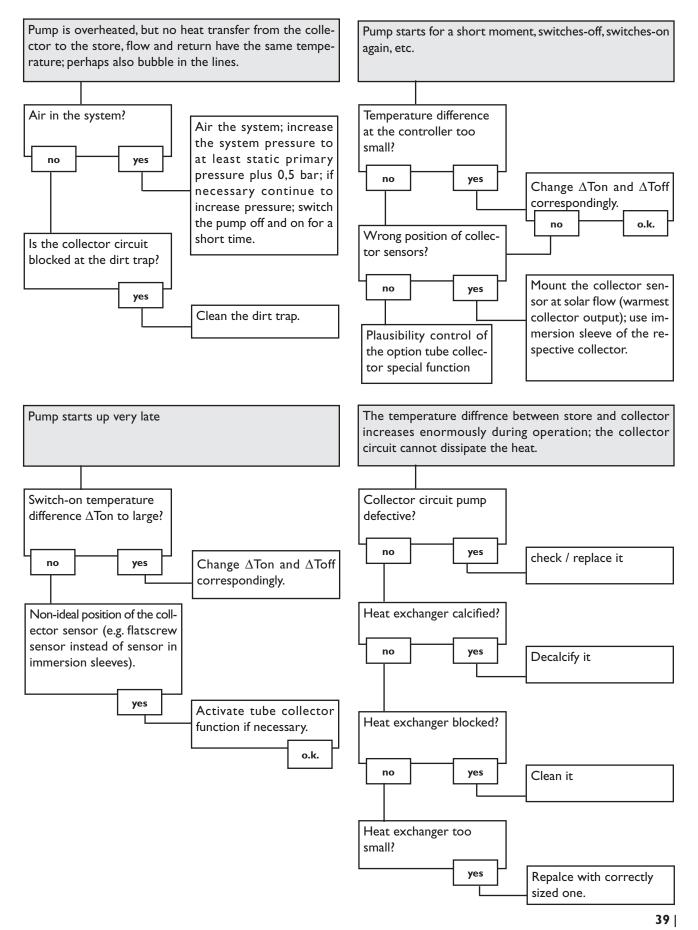

of the respective temperature sensor. The error code 888.8 is shown in the display.

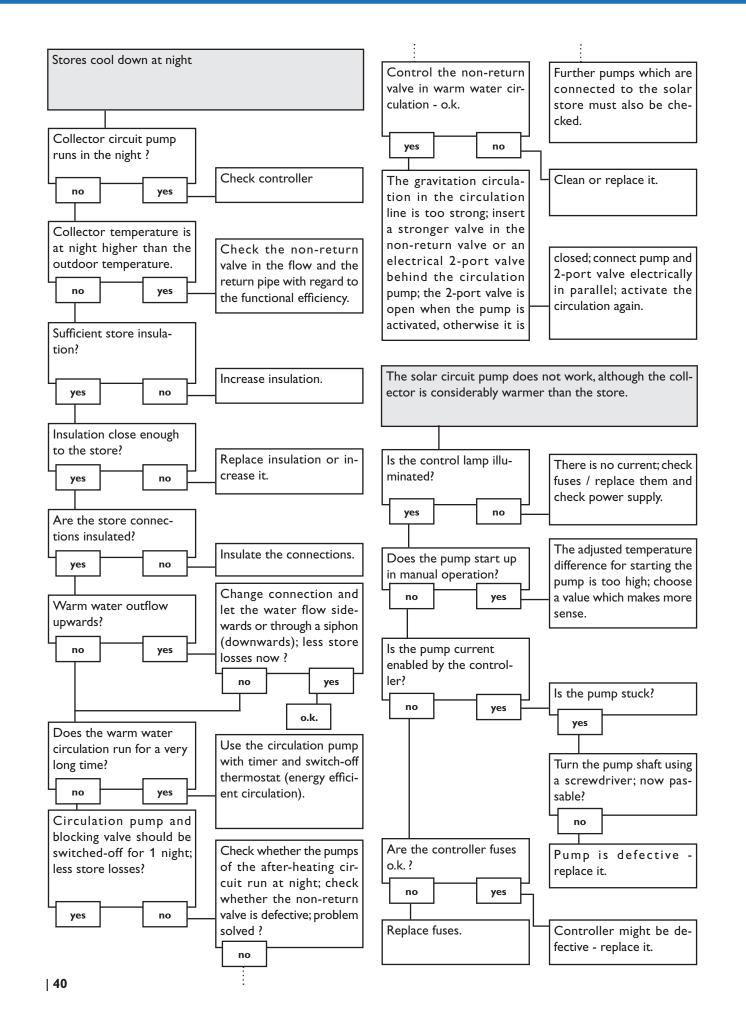
Disconnected PT1000 temperature sensors can be checked with an ohmmeter. Please check the resistance values correspond with the table to the left.

37 |

3. Messages:

If a malfunction occurs, a message is displayed in the display of the controller:




system is guaranteed, but the controller

should be returned to the manufacturer.

it has been a matter of data communication. But if the fault is still present, the controller should be returned to the manufacturer.

4.Various:

Distributed by:

Important notice:

The texts and drawings in this manual are correct to the best of our knowledge. As faults can never be excluded, please note: Your own calculations and plans, under consideration of the current standards should only be basis for your projects. We do not offer a guarantee for the completeness of the drawings and texts of this manual - they only represent some examples. They can only be used at your own risk. No liability is assumed for incorrect, incomplete or false information and / or any resulting damages.

Please note:

The design and the specifications can be changed without prior notice. The illustrations may differ from the original product.

| 44

Customer Service Centre

Hamworthy Heating Limited Fleets Corner, Poole, Dorset BH17 0HH Telephone: 0845 450 2866 Fax: 01202 662522 EMAIL: service@hamworthy-heating.com

Reprinting / copying

This mounting- and operation manual including all parts is copyrighted. Another use outside the copyright requires the approval of Hamworthy Heating Limited. This especially applies for copies, translations, microfilms and the storage into electronic systems. Editor: Hamworthy Heating Limited

22/11/2012 09:11:36

Hamworthy Heating Accredited Agents

Southern Ireland (Sales & Service)

HEVAC Limited Naas Road, Dublin 12, Ireland tel: **00 353 141 91919** fax: **00 353 145 84806** email: **info@hevac.ie**

Northern Ireland (Sales & Service) HVAC Supplies Limited Unit A6, Dargan Court, Dargan Crescent, Belfast BT3 9JP tel: 028 9077 7737 email: hvacsupplies@btconnect.com

Scotland (Sales & Service)

McDowall Modular Services 2 Penson Road, Queenslie Industrial Estate, Glasgow, G33 4AG tel: **0141 336 8795** fax: **0141 336 8954** email: **MMS.McDowallModularServices@hamworthy-heating.com**

North East England (Service) Allison Heating Products 12 Sunnyside Lane, Cleadon Village, Sunderland SR6 7XB tel: 0191 536 8833 fax: 0191 536 9933 email: allison.heating@gmail.com

Hamworthy Heating Customer Service Centre

Sales tel: 01202 662552 email: sales@hamworthy-heating.com

Technical Enquiries tel: 01202 662505 email: technical@hamworthy-heating.com

Servicing tel: 01202 662555 email: service@hamworthy-heating.com

Spares tel: 01202 662525 email: spares@hamworthy-heating.com

British engineering excellence from Hamworthy Heating; the commercial heating and hot water specialists.

Customer Service Centre Hamworthy Heating Limited, Wessex House, New Fields Business Park, Stinsford Road, Poole, Dorset, BH17 ONF

Telephone: 01202 662500 Fax: 01202 662522 Email: service@hamworthy-heating.com Website: www.hamworthy-heating.com