Chesil - Standard Pressurisation Unit

Equipment For Commercial/Light Industrial Central Heating Installations.

Installation, Commissioning and Servicing Instructions

IMPORTANT NOTE

THESE INSTRUCTIONS MUST BE READ
AND UNDERSTOOD BEFORE INSTALLING,
COMMISSIONING, OPERATING OR
SERVICING EQUIPMENT

Customer After Sales Services

Telephone: 0845 450 2866 E-mail: aftersales@hamworthy-heating.com Fax: 01202 662522

Technical Enquiries

To supplement the detailed technical brochures, technical advice on the application and use of products in the Hamworthy Heating range is available from our technical team in Poole and our accredited agents.

Site Assembly

Hamworthy offer a service of site assembly for many of our products in instances where plant room area is restricted. Using our trained staff we offer a higher quality of build and assurance of a boiler built and tested by the manufacturer.

Commissioning

Commissioning of equipment by our own engineers, accredited agents or specialist sub – contractors will ensure the equipment is operating safely and efficiently.

Maintenance Agreements

Regular routine servicing of equipment by Hamworthy service engineers inspects the safety and integrity of the plant, reducing the risk of failure and improving performance and efficiency. Maintenance agreements enable our customers to plan and budget more efficiently.

Breakdown service, repair, replacement

Hamworthy provide a rapid response breakdown, repair or replacement service through head office at Poole and accredited agents throughout the UK.

Spare Parts

A comprehensive spare parts service is operated from our factory in Poole, providing replacement parts for both current and discontinued products. Delivery of parts and components is normally from stock within seven days. However, a next day delivery service is available for breakdowns and emergencies.

Chesil - Standard Series Pressurisation Units

Installation, Commissioning and Servicing Instructions

Chesil Standard Models

NOTE: THESE INSTRUCTIONS MUST BE READ AND UNDERSTOOD BEFORE INSTALLING, COMMISSIONING, OPERATING OR SERVICING EQUIPMENT.

THE CHESIL STANDARD PRESSURISATION UNITS ARE INTENDED FOR USE ONLY IN COMMERCIAL/LIGHT INDUSTRIAL APPLICATIONS.

THESE PRESSURISATION UNITS COMPLY WITH THE ESSENTIAL REQUIREMENTS OF THE MACHINERY DIRECTIVE 89/392/EEC AMENDED BY 91/368/EEC, THE LOW VOLTAGE DIRECTIVE 73/23/EEC AMENDED BY 2006/95/EC AND THE ELECTROMAGNETIC COMPATIBILITY DIRECTIVE 89/336/EEC AMENDED BY 2004/108/EC

PUBLICATION NO. 500001182 ISSUE 'H' FEBRUARY 2015

	CONTENTS	PAGE
1.0	INTRODUCTION	1
2.0	TECHNICAL DATA	1
3.0	SEALED SYSTEM FUNCTION	2
3.1	Terminology	
3.2	Application	
4.0	OPERATION OF THE PRESSURISATION UNIT	
4.1	Unit Operation	
4.2	Safety Functions	4
5.0	GENERAL REQUIREMENTS	
5.1	Related Documents	
5.2	Mains Water Connections	
5.3	Expansion Vessels	
5.4	Safety Relief Valve	5
6.0	INSTALLATION	
6.1	Location	
6.2	Pipework Connections	
6.3	Electrical Connection	
6.3.1	Mains Connection	
6.3.2	Safety Switches/Circuits	8
7.0	COMMISSIONING	
7.1	Mechanical Installation	
7.2	System Flushing	
7.3	Electrical Installation	
7.4	System Expansion Vessel	
7.5 7.6	Initial Setting Of Units	
7.7	Filling The UnitPressure Switch Adjustment	
7.7.1	Pressure Switch Adjustment Apparatus	
7.7.1 7.7.2	Cold Fill Pressure Switch	
7.7.3	Lo Pressure Switch	
7.7.4	Hi Pressure Switch	
8.0	FAULT FINDING.	13
9.0	SERVICING SCHEDULE	1.4
9.1	6 Monthly	
9.2	12 Monthly	
9.3	4 Yearly	
10.0	SERVICING AND REPLACEMENT OF COMPONENTS	14
10.1	Hamworthy Heating Recommended Spares	
10.2	Pump Removal	
10.3	Pump Fittings On Both Units	
10.4	Inlet Valve On Both Units	
10.5	Pressure Switches On Both Units	
10.6	Pressure Gauge On Both Units	
10.7	Non-Return Valve	17
10.8	Hours Run Meter Kit (OPTIONAL)	
10.8	Frost Protection Kit (OPTIONAL)	18
A DDFNI	DIX 'A' – Diagrams, drawings and Data	18

FIGURES		PAGE
Figure 1	Basic Overall Dimensions	1
Figure 2	Technical Data	2
Figure 3	Typical System Schematic Layout	3
Figure 4	Expansion Vessel Operation	3
Figure 5	Schematic Layout of the Standard Units	4
Figure 6	Hamworthy Heating Expansion Vessels	5
Figure 7	Recommended Clearance Dimensions	6
Figure 8	Mounting Bracket Dimension	
Figure 9	Screw Hole Location In floor Standing Unit	6
Figure 10	Pipework Connections Floor Standing Unit	
Figure 11	Pipework Connections Wall Mounted Unit	8
Figure 12	Alarm Terminal	9
Figure 13	Restrictor Inserts	10
Figure 14	Changing Restrictor Inserts	10
Figure 15	Float Adjustment	10
Figure 16	Pump Priming Screw	11
Figure 17	Pressure Switch Adjustment	11
Figure 18	Pressure Switch Adjustment Apparatus	12
Figure 19	Fault Finding Guide	13
Figure 20	Pump Removal	15
Figure 21	Pump Removal	15
Figure 22	Pump Removal	15
Figure 23	Pump Removal	
Figure 24	Pump Wiring Terminal	15
Figure 25	Capillary Nut	
Figure 26	Pressure Switch Wiring	
Figure 27	Pressure Gauge	
Figure 28	Non-Return Valve On Unit	
Figure 29	Non-Return Valve Location On Pump	
Figure 30	Hours Run Meter Kit (OPTIONAL)	
Figure 31	Frost Protection Kit (OPTIONAL)	
Figure A1	Main Wiring Diagram	
Figure A2	Frost Protection Kit Wiring Diagram	20
Figure A3	Heating System Calculation Sheet	21

1.0 INTRODUCTION

The WSS & FSS model pressurisation units in the Hamworthy Chesil range are designed to maintain the minimum pressure requirement of modern low/medium temperature, hot water sealed systems. The pressurisation units also provide replacement water for losses from the systems.

Note! The pressurisation unit is not to be used for the initial filling of the system.

The Chesil units are housed in a powder coated steel cabinet with removable cover. Housed in the cabinet is a pump, connecting pipe-work and pressure switches. In the top of the cabinet is the header tank, with a float valve. In the front of the wall mounted cabinet or top of the floor standing unit is the systems pressure indication gauge.

The range has 2 models which incorporate the following features:-

Pump control pressure switch
Non-return valve
High/Low pressure switches
0 – 6 bar system pressure gauge
Isolating Valve (between tank and pump)

An 'Hours Run Meter' kit is available as an optional extra Pt. No. 563605662 - see page 17 for details. A 'Frost Protection' kit is available as an optional extra Pt. No. 563605663 -see page 18 for details.

2.0 TECHNICAL DATA

The basic overall dimensions of both units are shown in Figure 1 below, complete dimensions are shown in Figures 10 & 11 on pages 7 & 8.

All screw threads used in the Chesil units conform to **ISO 7/1** or **ISO 228/1** for pipe threads where applicable & **ISO 262** for all general screw threads.

Performance and General Data is shown in Figure 2 (overleaf).

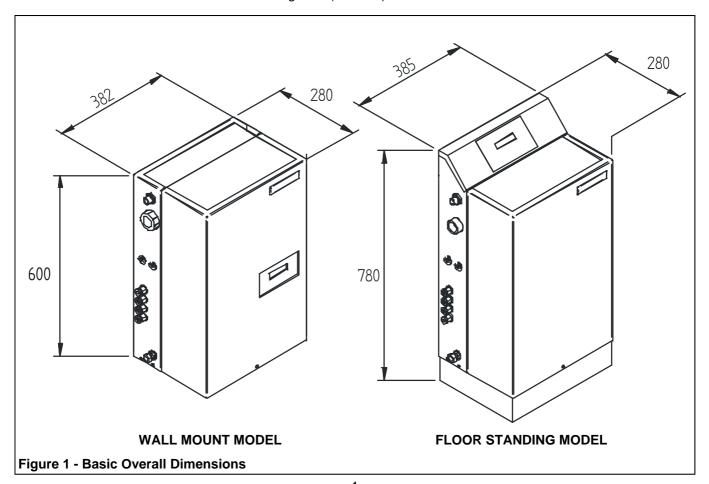


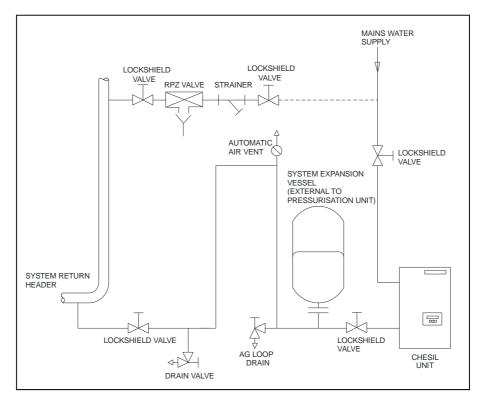
Figure 2 Chesil Pressurisation Units—Technical Data

		Wall Mount - WSS Model	Floor Standing - FSS Model
Hamworthy Heating Part Number		563216015	563216019
Weight (empty)	kg	21	23
Weight (full)	kg	28.6	30.6
Minimum cold fill pressure	bar		1.0
Maximum cold fill pressure	bar		3.4
Maximum operating pressure	bar		7.0
Maximum Flow Rate	l/min		6
Maximum water flow rate @ maximum cold fill pressure	l/min		0.1
Tank capacity	litres		7.6
Backflow prevention air gap requirement		Ту	/pe AF
Factory Preset Values		•	
Cold fill pressure	bar	1.8	
System low pressure switch	bar	1.3	
System high pressure switch	bar	3.6	
To Suit System Conditions		•	
Maximum water flow temp	°C	82	
Maximum static height m 16.5		16.5	
Minimum system operating pressure bar 0.7		0.7	
Maximum system operating pressure	bar	7.0	
Safety relief valve setting (Not HHL supply) bar 4.0		4.0	
Nominal pressure differential	bar		0.4
Electrical Data			
Pressure switch contact rating		15A	240V AC
Electrical Supply		230V A0	C 50Hz 1Ph
Start current	amps		9
Run current	amps		2.8

3.0 SEALED SYSTEM FUNCTION

Figure 3 shows the layout of a typical sealed system.

3.1 Terminology

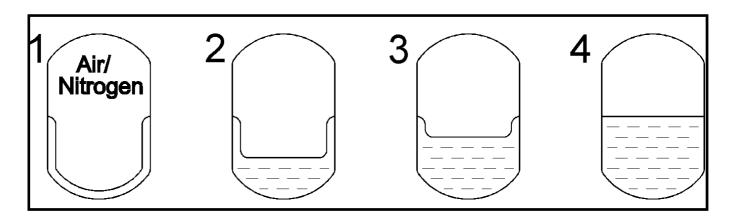

Expansion Vessel Charge Pressure

The gas pressure in the expansion vessel with water connection open to atmosphere

System Cold Fill Pressure

The water pressure in the system that the pressurisation unit is set to maintain

Figure 3 - Typical System Schematic Layout



3.2 Application

The system expansion vessel charge pressure is set 0.1 bar below the cold fill pressure. Before operation of the boiler, with the system at cold fill pressure the expansion vessel is empty. As the system heats up the expanded volume is absorbed by the expansion vessel. A small pressure rise occurs which is accommodated by the vessel. When the system cools the pressure drops. If there has been some fluid loss the pressurisation provides replacement.

Figure 4 - Expansion Vessel Operation

- 1. Diaphragm position at the cold fill / charge pressure. The vessel is empty of system fluid.
- 2. Diaphragm position at the hot working pressure. The system volume has expanded due to the temperature rise. The gas in the vessel is compressed. Acceptance factor = 0.35 maximum (recommended).
- 3. Diaphragm position at high system pressure. The boiler system is shut down by the system pressure switch.
- 4. Diaphragm at the safety valve lift pressure. Caused by boiler temperature limiter failure for example. Acceptance factor = 0.5 maximum (recommended).

4.0 OPERATION OF THE PRESSURISATION UNIT

Figure 5 Schematic Layout of the Standard Unit.

4.1 Unit Operation.

A drop in system pressure due to, for example, loss of water, will cause the pump to maintain the pressure. As the level of water in the tank reduces a ball valve allows new water into the tank. When the pump pressure switch is satisfied the pump stops.

4.2 Safety Functions:

The unit is fitted with two extra pressure switches. A pressure above the high pressure limit set on the unit will switch over the SPDT high pressure switch and a pressure below the low pressure limit set on the unit will switch over the SPDT low pressure switch.

The switches can be connected to boiler safety circuits as shown in the wiring diagram supplied with the unit and displayed inside the unit's cover.

5.0 GENERAL REQUIREMENTS

5.1 Related Documents.

Pressure Systems and Transportable Gas Containers Regulations 1989.

It is the law that pressure system appliances are installed by competent persons in accordance with the above regulations. Failure to install appliances correctly could lead to prosecution. It is in your own interest and that of safety, to ensure that this law is complied with.

The installation of the pressurisation unit and expansion vessel MUST be in accordance with the relevant requirements of the Pressure System Regulations, Building Regulations, IEE Regulations and the bylaws of the local water authority.

It should also be in accordance with any requirements of the local authority and the relevant recommendations of the following documents:-

Applicable standards and documents are:

BS 7074 Application, selection and installation of expansion vessels and ancillary equipment for sealed water systems.

BS 6644 Installation of Gas Fired Hot Water Boilers 60 kW to 2 MW

BS 6880 Parts 1,2&3: Code of practice for low temperature hot water heating systems of output greater than 45 kW.

BS 6759 Part 1 (ISO 4126): Specification for safety valves for steam and hot water.

BS EN 60335-1: Safety of household and similar electrical appliances

5.2 Mains Water Connections.

All connections to local water mains must comply with WRAS Regulations including any local requirements. It is a requirement of the water supply (water fittings) regulations 1999 that system filling is via an RPZ (reduced Pressure Zone) valve with integral BA air gap.

5.3 Expansion Vessels.

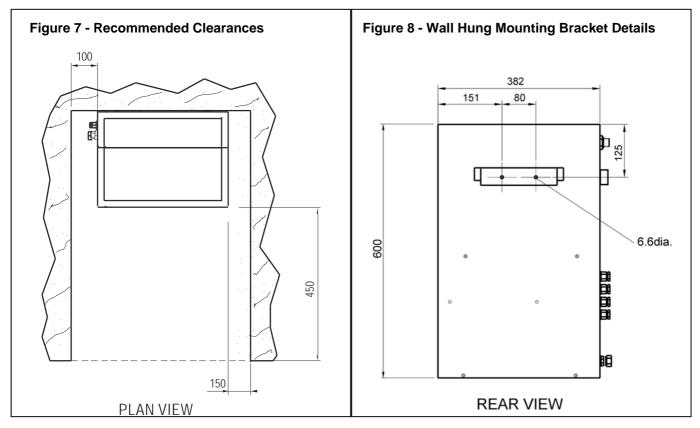
System expansion vessels must be constructed to BS4814 or BS6144.

The required expansion vessel size is detailed in the contract documents. If in any doubt contact Hamworthy Heating Limited for comprehensive system sizing information. Hamworthy Heating Ltd supply the 'Burstock' range of suitable expansion vessels, details are shown below. A calculation sheet which can be used to determine a suitable volume for an expansion vessel can be found in the Appendix.

Figure 6 Hamworthy Heating Expansion Vessels - Burstock

SALES REF NO.	HAMWORTHY PART NO.	TYPE	TOTAL VOL. LITRES	CONNECTION DETAILS	WT kgs
HOT WATER APPLICATIONS - EPDM DIAPHRAGM (0-100°C MAX)					
PV25W (kit)	563605641	VERTICAL	25	G3/4"	4.7
PV60W	532712094	VERTICAL	60	G1"	14
PV80W	532712095	VERTICAL	80	G1"	16
PV100W	532712096	VERTICAL	100	G1"	19
PV200W	532712088	VERTICAL	200	G1 1/4"	40
PV300W	532712089	VERTICAL	300	G1 1/4"	54
PV400W	532712090	VERTICAL	400	G1 1/4"	70
PV500W	532712091	VERTICAL	500	G1 1/4"	79
PV800W	532712092	VERTICAL	800	G1 1/2"	195
PV1000W	532712093	VERTICAL	1000	G1 1/2"	228

Note: 25 litre expansion vessels are supplied complete with wall mounting bracket


5.4 Safety Relief Valve.

Must comply with BS6759 part 1, and be sized and installed in accordance with BS6644 & BS7074.

6.0 INSTALLATION

The units are supplied inside strong cardboard boxes with padding and should be left in this packaging until they are installed.

6.1 Location.

A mounting bracket is supplied inside the wall mounted unit taped to the front of the tank. It is intended that this bracket should be fixed to the wall and the unit hung from it.

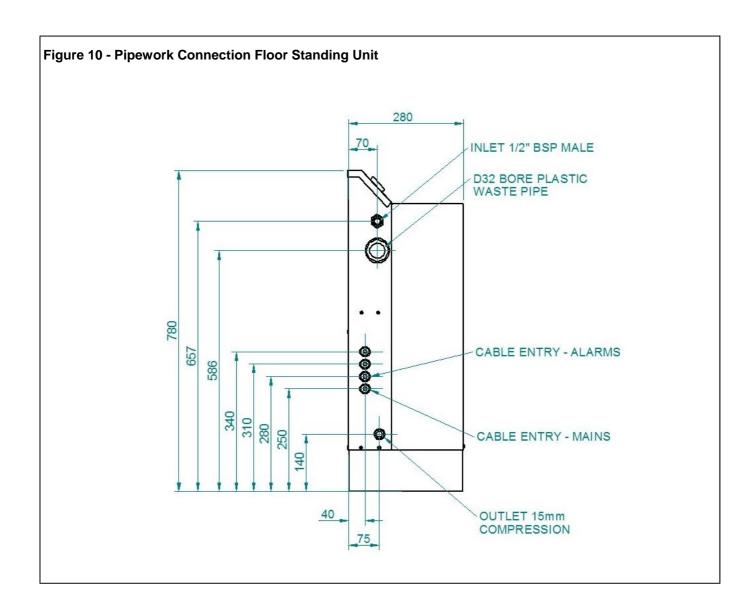
Each wall mounted unit also has two holes in the back of the chassis for extra security. The corresponding holes in the wall should be drilled to suit once the unit is mounted on its bracket. The bracket dimensions are shown in fig 8 above.

The floor mounted pressurisation unit can be secured to the floor using screws through the holes in the base of the unit. See figure 9 below. Both units must be secured before making any hydraulic connections.

Figure 9 - Base Screw Hole Location In Floor Standing Unit

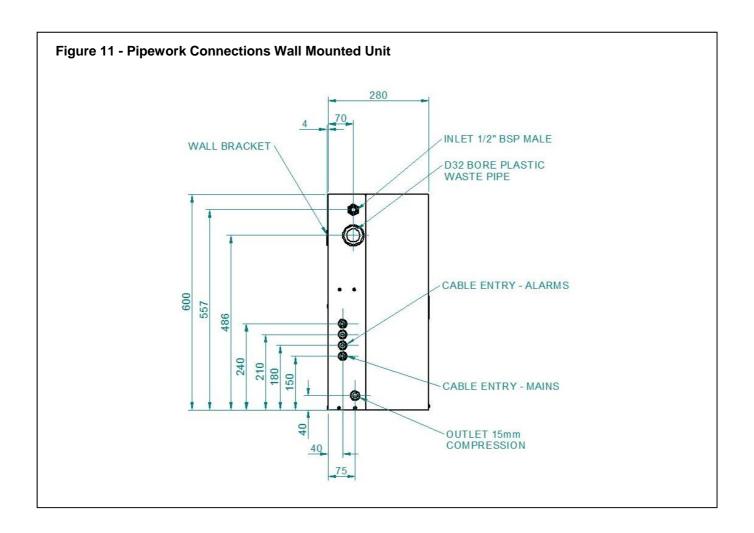
6.2 Pipework Connections (Shown in Figures 10 & 11)

1) Mains water connection (½" BSP Male).


The units have a type 'AF' air gap to prevent backflow in accordance with Water Supply (Water Fittings) Regulations 1999. It is a requirement of these regulations that system filling is via an RPZ (reduced pressure zone) valve with integral Type BA airgap. The water supply connection must conform to all local WRAS regulations.

2) Overflow connection (D32mm Bore Plastic Waste Pipe).

Overflow should be piped to where it will be safe but visible so it will be noticed and corrected.


3) System connection.

The system connection is via a 15MM compression fitting. The unit <u>must</u> be connected to the system by an antigravity loop (see Figure 3). The antigravity loop must be made in pipe-work no smaller than the expansion vessel connection, and have a minimum height of 2 metres. It should include a lock-shield (or lockable) valve at the system connection point for servicing and an automatic air vent fitted at the highest point of the loop. The pipe -work and fittings must be pressure tested to 1.5 times the safety valve lift pressure.

Pump Spindle Access hole

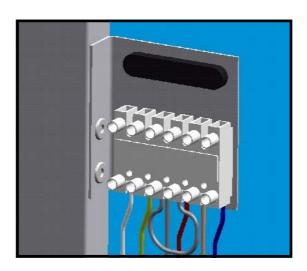
A Ø20mm hole has been added to the right hand side panel of the back plate to allow for screw driver access to the pump drive spindle. This hole may be utilised following the removal of a rubber bung.

6.3 Electrical connection.

Wiring diagrams for the Floor Standing and Wall Mounted units can be found fixed inside the cover of the unit and in Appendix A1. All wiring to the pressurisation unit must be in accordance with the IEE regulations, and any local regulations which apply. **Note!** If in any doubt a qualified electrician should be consulted.

6.3.1 Mains Connection

The standard unit is supplied fitted with a 1m flying lead for connection to the mains supply. Mains connection must be via a fused isolator rated at 13 Amps and positioned locally to the unit.


6.3.2 Safety Switches/Circuits

The SPDT hi and lo pressure switches can be incorporated into circuits to interrupt a boiler control signal, in order to shut down the boiler in the event of a system fault condition. The boiler control system must be designed so that manual resetting is required after a system fault condition.

The circuits are rated at 230 V \sim 50 Hz, 15A. NOTE if the factory set pressure switch levels are to be altered, the terminals should not be connected at this stage.

The connection terminal and its location is shown in fig 12.

Figure 12 Alarm Terminal Location

7.0 COMMISSIONING

Chesil units are supplied factory set and tested to suit the system parameters shown in Figure 2. If the application falls within these parameters the unit requires minimal commissioning checks.

7.1 Mechanical Installation.

Check that the Chesil Unit and expansion vessel has been installed correctly, as detailed in section 6.2: Pipework connections. Check also that all lock-shield or lockable valves are correctly set.

7.2 System Flushing.

Ensure that the system has been flushed and all foreign matter has been removed, including pipe scale.

Note! Should this material come into contact with the expansion vessel diaphragm it could result in premature failure of the expansion vessel assembly.

7.3 Electrical Installation.

Before working on Chesil units ensure all electrical circuits connected to it are isolated.

7.4 System Expansion Vessel.

To set or check the expansion vessel charge pressure the lock-shield valve between the Chesil unit and the vessel must be closed. The drain cock fitted on the base of the expansion vessel must be open to allow any water in the vessel to escape.

A suitable gauge should be used to check the charge pressure. Generally a Schrader 'car type' valve is fitted near the top of the expansion vessel. If the charge pressure is too high it can be reduced by depressing the centre of the Schrader valve or by using a pressure gauge with an integral air release valve. If the charge pressure is too low a small increase can be provided using a car foot pump other wise an <u>oil free</u> compressor or nitrogen bottle is recommended.

Note! The expansion vessel charge pressure should be set to 0.1 bar less than the cold fill pressure.

When the correct pressure is set the Schrader valve protective cap must be replaced.

Check the integrity of the pipe-work. Ensure the lock-shield valve between the Chesil unit and the expansion vessel is open and the drain valve is closed. Ensure the air purge plug is fitted (near the top of the expansion vessel).

7.5 Initial Setting Of The Units

- 1) Check water inlet supply, it MUST have a flow greater than 8l/min.
- 2) Flow Restrictors

Each unit comes with a selection of inserts that can be fitted into the inlet valve to achieve the required output: Mains inlet pressure > 4 bar H.P. restrictor (white see fig 13) Mains inlet pressure < 4 bar L.P. restrictor (red see fig 13)

Figure 13 Restrictor Inserts

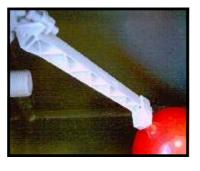

The HP restrictor is fitted in the inlet side of the float valve assembly. This should be unscrewed in order to change the restrictor (see fig 14). The LP Restrictor is clipped to the side of the valve assembly.

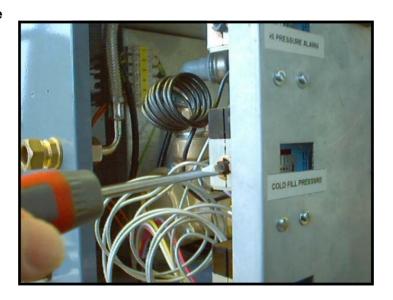
Figure 14 Changing Restrictor Inserts

- 3) If the cold water is from a tank then the tank must be at least 2m above the inlet for the header tank to remain full when the pump is working at maximum rate. The pressurisation units should not be used to fill a heating system.
- 4) Check that the unit has been connected to the system using a suitable isolation valve.
- 5) Check that the mains lead has been connected to a suitably fused and switched isolator.
- 6) The cold fill pressure switches on the units are factory set to the levels listed in figure 2 as are the Hi and Lo pressure switches. If these levels are unsuitable for the installation then adjustment instructions are given in section 7.7.
- 7) Set the float to its lowest level. (fig 15)

Figure 15 Float Adjustment

7.6 Filling The Unit

- 1) Check all connections and pressures. Open inlet isolation valve and fill the tank.
- 2) Undo the priming screw on pump head (fig 16). Prime until water appears. Close the screw and turn on the pump (keeping system isolation valve closed). Pump should run for a few seconds until set pressure is reached.

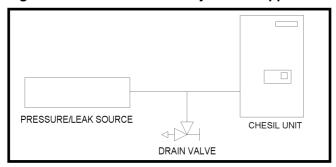

- 3) Check for any leaks within the unit, if OK open the system isolation valve and fill the system by a suitable means such as an RPZ valve.
- 4) The unit will now monitor the system and keep it at the required pressure.

7.7 Pressure Switch Adjustment

The pressure switches are fitted with a scale to indicate the pressure at which they are set. This scale is to be used for indication only. As all the pressure switches and the pressure gauge take readings from the same place, the unit's pressure gauge can be used to give an accurate reading when setting switching levels.

The switches should be set last, after all the other commissioning tasks are complete.

Figure 17. Pressure


Switch Adjustment

All the pressure switches have a nominal pressure differential (Hysterisis) of 0.4 bar. This means that there will be 0.4 bar between the pressure at which the switch changes state during a pressure rise and the pressure at which it will change when the pressure is falling again or vice versa. For example if the cold fill pressure switch is set to 3.4 bar then the switch will operate when the pressure rises to 3.4 bar causing the pump to stop. The switch will not change over & start the pump until the pressure has fallen back to 2.9 bar.

7.7.1 Pressure Switch Adjustment Apparatus

When adjusting pressure switches the unit must be set up with the apparatus similar to that shown in Figure 18 connected to the outlet.

Figure 18. Pressure Switch Adjustment Apparatus

7.7.2 Cold Fill Pressure Switch

Designed to stop the pump when pressure reaches a pre-set level. Setting procedure as follows:

- 1). Ensure the system pressure is lower than the pressure the switch is to be set to.
- 2). Switch the unit on.
- 3) Introduce a small leak at the outlet.
- 4) Because of the leak the unit begins a cycle of starting and stopping. Adjust and set the cut out position of the switch so that the pump turns off at the desired pressure.

7.7.3 Lo Pressure Switch

Designed to stop the boiler operating if the pressure falls below a pre-set level. Setting procedure as follows:

- 1) Set the cold fill pressure switch by following the procedure in section 7.7.2 & allow system to run to pressure.
- 2) Isolate the unit from the mains electrical supply & from the boiler circuits
- 3) Introduce a small leak until the unit's pressure gauge reading equals the required Lo pressure setting.
- 4) Stop the leak.
- 5) The lo pressure switch is lowest on the panel which pivots around corner for easy access (see figure 22).
- 7) Set the lo pressure switch to its highest level (adjustment is shown in fig 17)
- 8) The terminals at either end of the switch form a closed circuit. Adjust the switch until the circuit is open. A meter across the two terminals will signal the change.

7.7.4 Hi Pressure Switch

Designed to stop the boiler operating if the pressure exceeds a preset level. Setting procedure follows:

- 1) Isolate the unit from the mains electrical supply & boiler circuits.
- 2) Use the pressure source to increase the pressure until the pressure gauge reads the required Hi pressure level.
- 3) Set the hi pressure switch to its lowest level (adjustment is shown in fig 17).
- 4) The terminals at either end of the switch form an open circuit. Adjust the until the circuit is closed. A meter across the terminals will signal a change.

If needed figure 26 shows the wire colours of the switches.

8.0 FAULT FINDING

General fault finding is shown in Figure 19. If the Chesil unit still does not operate satisfactorily, consult Hamworthy Heating for assistance.

Figure 19. Fault Finding Guide.

Fault	Possible Causes	Action
Pump will not run	Unit up to pressure	None
	No power to the unit	Check at source
	Isolator fuse blown	Replace fuse in isolator. Note! Investigate cause of blown fuse before restarting the unit
	Cold Fill Pressure switch set incorrectly	Adjust pressure switches (see section 7.7)
	Cold fill pressure switch wired incorrectly.	Check wiring against figure 26.
	Pump seized or faulty	Service or replace pump (see section 10)
Pump runs but will not build up pressure	Pump isolating valve closed	Open valve (see fig 20)
up pressure	Pump not primed	Prime pump (see section 7.6)
	No water in tank	Check water level and investigate if necessary
	Pump non return valve jammed	Check valve
	Flow restrictor is blocked	Check flow restrictor for blockage
Pump cuts in and out rapidly (hunting)	Pressure switches set incorrectly	Adjust pressure switches (see section 7.7)
Top only (committee)	Non return valve not sealing correctly	Clean valve seat or replace valve if necessary (see section 10.7)
	System Leak	Trace leak and ensure system is sound
Pump runs continuously	Cold fill pressure switch set incorrectly	Adjust pressure switches (see section 7.7) *
	Cold fill pressure switch faulty	Replace faulty switch (see section 10.5)
	System leak	Trace leak and ensure system is sound
Pump cuts out at wrong pressure	Cold fill pressure switch set incorrectly	Adjust pressure switches (see section 7.7)
	Cold fill pressure switch faulty	Replace faulty switch (see section 10.5)
Maximum system working pressure too high	Cold fill pressure switch set incorrectly	Adjust pressure switches (see section 7.7)
	Cold fill pressure switch faulty	Replace faulty switch (see section 10.5)
Boiler switches off un- expectedly	Hi or lo pressure switches set incorrectly	Adjust pressure switches (see section 7.7)
	Hi or lo pressure switches & circuits wired incorrectly	Check wiring with Wiring diagram in appendix
System pressure runs consistently at cold fill pressure	Small system leak	Trace leak and ensure system is sound.

9.0 SERVICING SCHEDULE

The following is a recommended servicing schedule for the Chesil unit and expansion vessel. If remedial action is required, refer to section 10: SERVICING AND REPLACEMENT OF COMPONENTS. If in doubt consult Hamworthy Heating.

9.1 6 Monthly

- 1) Check the expansion vessel charge pressure, as described in section 7.4. A significant drop in charge pressure could be due to a faulty vessel diaphragm; replacement of diaphragm should be considered. See section 10.8.
- 2) Briefly run the pump to check for rotor seizure. This could occur if the pump is not run for extended periods. This can be accomplished by slightly opening the expansion vessel drain valve to initiate a leak.

 Note! Ensure that the drain valve is closed after this operation.

9.2 12 Monthly

- 1) Check the ball float valve diaphragm seat for integrity and replace if necessary. Also check the plastic float for soundness.
- 2) Check the expansion vessel for signs of external corrosion. If any deterioration is observed then it is recommended that the frequency of inspection be increased.
- 3) Check the operation of the safety circuits if utilised on the unit.

9.3 4 Yearly

1) Remove the expansion vessel diaphragm as described in section 10.8 and inspect for wear/ageing. Inspect the internal surface of the vessel for corrosion.

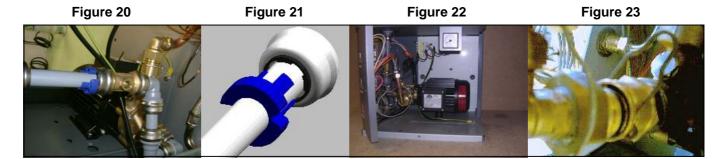
Significant corrosion can lead to failure of the vessel; replacement of the entire vessel should be considered. If necessary replace the diaphragm as described in section 10.8.

10.0 SERVICING AND REPLACEMENT OF COMPONENTS

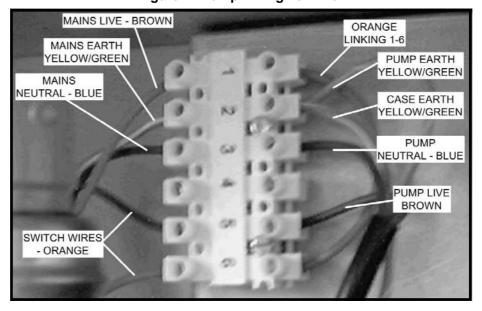
Note! When servicing or replacing Chesil components electrically isolate the unit and close the system and expansion vessel isolating valves. The unit should also be isolated from the pressure alarm circuits.

When remaking screwed connections use a thread sealant.

The front cover on the Chesil units are secured by one screw at the lower edge of the front cover on the wall mounted and floor mounted units. Two screws on the side of the floor standing unit secure the inclined top panel in place.


10.1 Hamworthy Heating Recommended Spares

Part	Part N°
Pump Assembly Float Valve Assembly Pressure Gauge Pressure Switch Assembly Non-return valve cartridge	530905053 531911038 557002009 533925005 531911040


NOTE! For any service/replacement parts the unit serial No. (on the Data Plate inside the unit) MUST be quoted. For service or spares contacts please refer to the inside front cover of this guide.

10.2 Pump Removal (part n° 530805053)

- 1) Isolate water by turning screw in ball valve see fig 20 below.
- 2) Disconnect the last grey elbow fitting closest to the pump head using the blue tool provided. Take care to line up the tool correctly before pushing the tool into the fitting to release the pipe (see fig 21).
- 3) The pressure switch assembly can be pulled forwards (pivots on left corners see fig 22)
- 4) Disconnect the outlet pipe from the pump. Remove the quick release clip first (see fig 23)
- 5) Disconnect the wiring on the mains terminal (see fig 24)
- 6) The pump assembly including the mounting plate can now be removed from the unit.
- 7) When the pump assembly has been removed a new replacement assembly should be fitted.

The power lead from the pump is connected to the mains terminal on the back wall of the unit. The connections are shown in Figure 24 below.

Figure 24 Pump Wiring Terminal

10.3 Pump Fittings

When replacing the pump it is not necessary to remove the fittings assembled into the cast pump head. Fittings are provided assembled with each spare pump to ease replacement. Once re-placed and connected the pump needs to be bled. Instructions of this can be found in section 7.6.

10.4 Inlet Valve (part n°531911038)

The inlet valve and float in the header tank are supplied as one assembly (see fig 15). The removal/replacement procedure is as follows.

- 1) Isolate the unit from the water supply.
- 2) Undo 1/2"BSP connection to remove supply pipe.
- 3) Unscrew the lock nut from the inlet tube. The valve and float are now free to be removed.
- 4) On the standard unit there is a black spacer which fits between the tank and the chassis. This must be refitted when a new assembly is installed.
- 5) Once fitted the float adjustment should be set to the lowest level (see section 7.5).

10.5 Pressure Switches (part n° 533925005)

- 1) Undo the capillary nut holding the end into the pipe (see fig 25).
- 2) Take off the wires. The cold fill pressure switch on both units is connected to two orange wires which can be reconnected any way round. The Hi and Lo pressure switches must be reconnected as shown in fig 26.
- 3) Pressure switch must be set to correct level. Setting instructions are given in section 7.

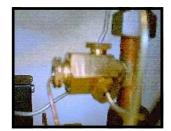


Figure 25 Capillary Nut

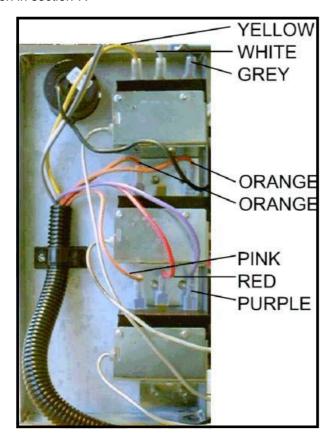
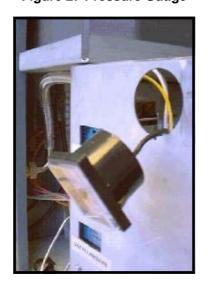



Figure 26 Switch Wiring

10.6 Pressure Gauge (part n° 537002009)

- 1) Undo the capillary nut holding the end into the pipe (see fig 25).
- 2) Depress the tags on the opposite sides of the gauge body and push through the panel (see fig 27).

Figure 27 Pressure Gauge

10.7 Non-Return Valve (part n° 531911040)

- 1) Follow the procedure for removal of the pump (see section 10.2). The non-return valve is inside the brass fitting shown in figure 28.
- 2) Unscrew the brass fitting from the pump head (see figure 29).
- 3) Push the valve out from the brass fitting as shown in figure 28.

Figure 28

Figure 29

10.8 Hours Run Meter Kit (OPTIONAL) Part No. 563605662

An 'Hours Run Meter' kit is available as an optional extra from Hamworthy Heating Ltd (part no.563605662) which will inform the end user or service engineer of the length of time that the pump has run.

This could be a good indication of a possible system leak.

The meter can be installed next to the pressure gauge allowing the accumulative reading to be observed when the front cover is removed.

Installation instructions are included with the kit which can be retro fitted to any standard Chesil pressurisation unit. (see fig.30)

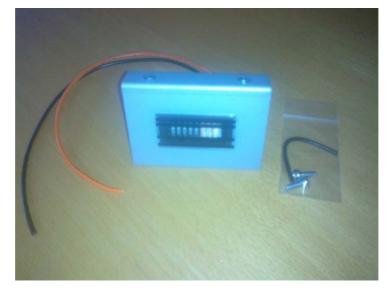


Figure 30 - Hours Run Meter Kit (optional)

Spares for Optional Hours Run Meter Kit:

Hours Run Meter533901689

10.8 Frost Protection Kit (OPTIONAL) Part No. 563605663

This is an optional extra kit available from Hamworthy Heating Ltd - Part No. 563605663

The Frost Protection kit consists of a small heating element, a thermostat, 5M of trace cable and all wiring required to retro-fit the frost protection kit to any Chesil pressurisation unit.

Installation instructions are supplied separately with the kit.

Useful for installations where the Chesil unit could be subjected to ambient temperatures approaching 0°C. At a set temperature, determined by the thermostat supplied, a small heating element affixed to the baseplate of the unit will be activated raising the ambient temperature within the Chesil casing. At the same time the 5M of trace cable, attached to the PU water supply pipe, will help to prevent the water from freezing.

Please contact Hamworthy Heating Ltd for further information.

Figure 31 - Frost Protection Kit (optional)

Spares for Optional Frost Protection Kit:

Heater	533901789
Thermostat	533901790
Trace Cable (5M)	533901791

APPENDIX

Contents	Page
Figure A1 Main Wiring Diagram	19
Figure A2 Frost Protection Kit Wiring Diagram	20
Figure A3 Heating System Calculation Sheet	21

Figure A1. Wiring Diagrams

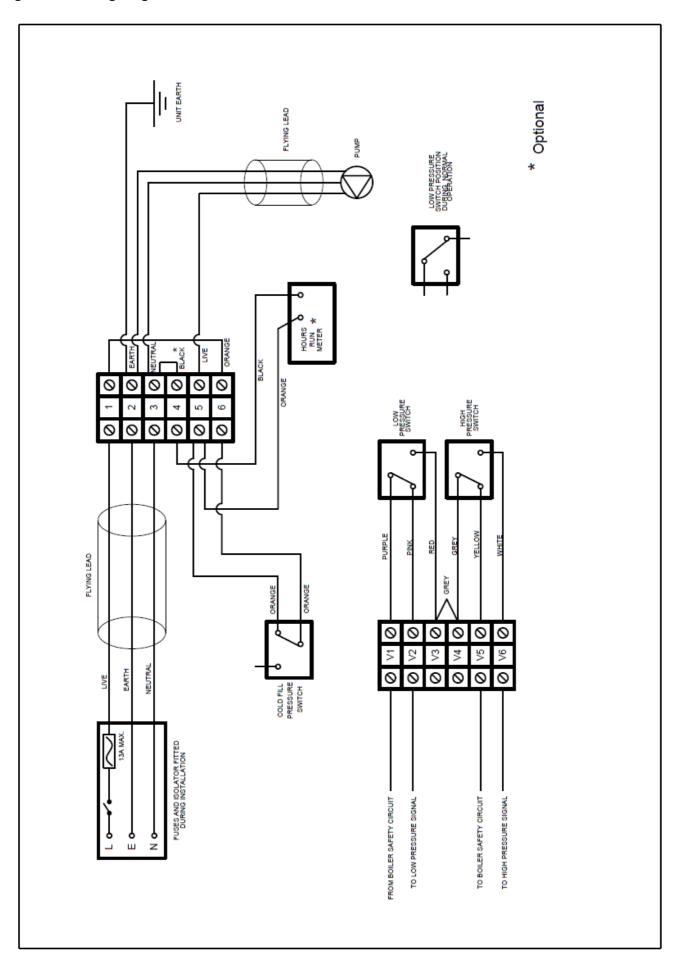
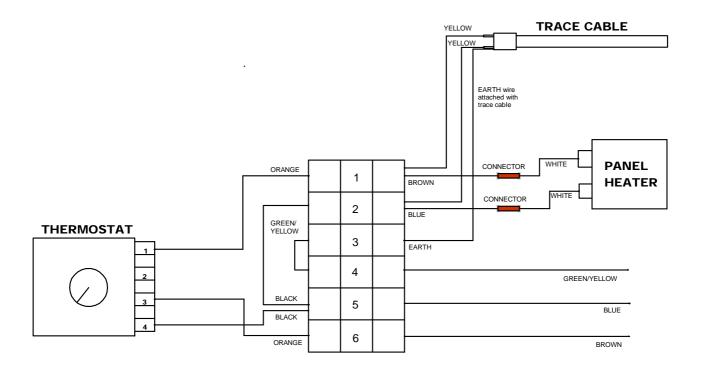
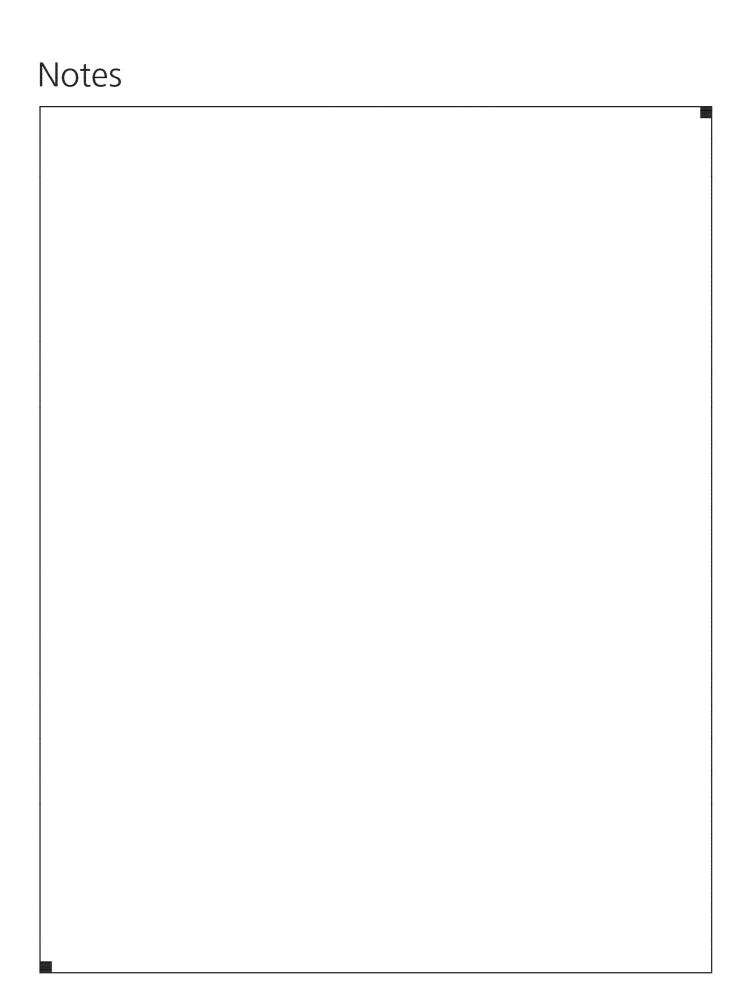



Figure A2 - Frost Protection Kit Wiring Diagram



NOTES:

Figure A3 - Heating System Calculation Sheet			
1. System Parameters	Furnis		
	Example Vs = 2000 litres ra = 10% P _w = 8 bar P _h = 22 m		
If the system volume is not known then the following rule of thumb can be applied:			
System water content = Boiler power (KW) X 10			
2. Expansion Vessel Volume Calculation, Vv-			
$Vv = \frac{(ra + 81.5) \times Vs}{921} = \frac{(+ 81.5) \times }{921} Vv = $ litres	$Vv = \frac{(10+81.5) \times 2000}{921} = 199$		
If the system is to be set up using the factory preset pressure switch levels for the Chesil unit then no other calculations are necessary. The factory preset switch levels are:			
Cold Fill Pressure Switching Level, $P_{l} = 1.8$ bar Hi Pressure Switching Level, $P_{li} = 3.6$ bar Lo Pressure Switching Level, $P_{lo} = 1.3$ bar The safety valve lift pressure should be set 0.35 bar above the Hi pressure switching level.			
3. Cold Fill Pressure Switch Setting Calculation, P _f -			
$P_f = \frac{P_h}{10.2} + 0.2 = \frac{10.2}{10.2} + 0.2$ $P_f = \frac{10.2}{10.2}$ bar	$P_{\rm f} = \frac{22}{10.2} + 0.2 = 2.35$		
4. Safety Valve Lift Pressure Calculation, P _s -			
Actual fitted expansion vessel volume, V_{va} - V_{va} - V_{va} - litres Actual fitted expansion vessel acceptance factor, a_{va} -	V _{va} = 300		
$a_{va} = \frac{V_v \times 0.35}{V_{va}} = \frac{1}{100} \times 0.35$ $a_{va} = \frac{1}{100} \times 0.35$	$a_{va} = 0.23$		
Actual working pressure, P _{wa} -			
$P_{wa} = \begin{array}{cccc} P_f + a_{va} \\ \hline 1 - a_{va} \end{array} = \begin{array}{ccccc} & + & \\ \hline & 1 & - & \\ \hline \end{array} \qquad \qquad$	$P_{wa} = \frac{2.35 + 0.23}{1 - 0.23} = 3.35$		
Note! If $P_{wa} > P_{w}$ then increase expansion vessel volume, V_{va} and recalculate from step start of step 3			
$P_s = P_{wa} + 0.7 =$	$P_s = 3.35 + 0.7 = 4.05$		
5. Calculation of Expansion Vessel Acceptance Factor at Safety Valve Lift Pressure, a _s -			
$a_s = \frac{P_s - P_f}{P_s + 1} = $	$a_s = \frac{4.05 - 2.35}{4.05 + 1} = 0.34$		
Note! If $a_s > 0.5$ then increase expansion vessel volume, V_{va} and recalculate from step start of step 3			
6. Lo Pressure Switch Setting Calculation, P _{sl} -			
$P_{sl} = P_f - 0.3 =$	P _{sl} = 2.05		
7. Hi Pressure Switch Setting Calculation, P _{si} .			
P_{sh} = P_{wa} - 0.35 P_{sh} = P_{sh} bar	P _{wa} = 3.0		

USEFUL USER INFORMATION

INSTALLER	SITE ADDRESS

Hamworthy Heating Accredited Agents

North West England (Sales & Service)

Gillies Modular Services

210-218 New Chester Road, Birkenhead, Merseyside L41 9BG

tel: 0151 666 1030 fax: 0151 647 8101

Southern Ireland (Sales & Service)

HEVAC Limited

Naas Road, Dublin 12, Ireland

tel: 00 353 141 91919 fax: 00 353 145 84806

Northern Ireland (Sales & Service)

HVAC Supplies Limited

Unit A6, Dargan Court, Dargan Crescent, Belfast BT3 9JP

tel: 02890 747737 fax: 02890 741233

Scotland (Sales & Service)

McDowall Modular Services

2 Penston Road, Glasgow, Scotland G33 4AG

tel: 0141 336 8795 fax: 0141 771 9635

North East England (Service)

Allison Heating Products

12 Sunnyside Lane, Cleadon Village, Sunderland SR6 7XB

tel: 0191 536 8833 fax: 0191 536 9933

Hamworthy Heating Customer Service Centre

Sales

tel: **0845 450 2865**

Technical Enquiries

tel: 0845 450 2865

Servicing

tel: 01202 662555

Spares

tel: 0845 450 2866

Customer Service Centre

Hamworthy Heating Limited, Fleets Corner, Poole, Dorset BH17 0HH

Telephone: **0845 450 2866** Fax: **01202 662522**

Email: aftersales@hamworthy-heating.com Website: www.hamworthy-heating.com